2021年内蒙古呼和浩特市中考数学试卷(含答案与解析)
几种气体的液化温度(标准大气压)如下表:
气体 |
氧气 |
氢气 |
氮气 |
氦气 |
液化温度 |
|
|
|
|
其中液化温度最低的气体是
A. |
氦气 |
B. |
氮气 |
C. |
氢气 |
D. |
氧气 |
某学校初一年级学生来自农村,牧区,城镇三类地区,下面是根据其人数比例绘制的扇形统计图,由图中的信息,得出以下3个判断,错误的有
①该校初一学生在这三类不同地区的分布情况为 .
②若已知该校来自牧区的初一学生为140人,则初一学生总人数为1080人.
③若从该校初一学生中抽取120人作为样本,调查初一学生父母的文化程度,则从农村、牧区、城镇学生中分别随机抽取30、20、70人,样本更具有代表性.
A. |
3个 |
B. |
2个 |
C. |
1个 |
D. |
0个 |
在平面直角坐标系中,点 , .以 为一边在第一象限作正方形 ,则对角线 所在直线的解析式为
A. |
|
B. |
|
C. |
|
D. |
|
如图,正方形的边长为4,剪去四个角后成为一个正八边形,则可求出此正八边形的外接圆直径 ,根据我国魏晋时期数学家刘徽的"割圆术"思想,如果用此正八边形的周长近似代替其外接圆周长,便可估计 的值,下面 及 的值都正确的是
A. |
, |
B. |
, |
C. |
, |
D. |
, |
以下四个命题:
①任意三角形的一条中位线与第三边上的中线互相平分;
② , , , , , 六个足球队进行单循环赛,若 , , , , 分别赛了5,4,3,2,1场,则由此可知,还没有与 队比赛的球队可能是 队;
③两个正六边形一定位似;
④有13人参加捐款,其中小王的捐款数比13人捐款的平均数多2元,则小王的捐款数不可能最少,但可能只比最少的多,比其他的都少.
其中真命题的个数有
A. |
1个 |
B. |
2个 |
C. |
3个 |
D. |
4个 |
已知二次项系数等于1的一个二次函数,其图象与 轴交于两点 , ,且过 , 两点 , 是实数),若 ,则 的取值范围是
A. |
|
B. |
|
C. |
|
D. |
|
已知圆锥的母线长为10,高为8,则该圆锥的侧面展开图(扇形)的弧长为 .(用含 的代数式表示),圆心角为 度.
动物学家通过大量的调查,估计某种动物活到20岁的概率为0.8,活到25岁的概率为0.5,据此若设刚出生的这种动物共有 只,则20年后存活的有 只,现年20岁的这种动物活到25岁的概率是 .
已知菱形 的面积为 ,点 是一边 上的中点,点 是对角线 上的动点.连接 ,若 平分 ,则线段 与 的和的最小值为 ,最大值为 .
若把第 个位置上的数记为 ,则称 , , , , 有限个有序放置的数为一个数列 .定义数列 的“伴生数列” 是: , , , , ,其中 是这个数列中第 个位置上的数, ,2, , 且 并规定 , .如果数列 只有四个数,且 , , , 依次为3,1,2,1,则其“伴生数列” 是 .
如图,四边形 是平行四边形, 且分别交对角线 于点 , .
(1)求证: ;
(2)当四边形 分别是矩形和菱形时,请分别说出四边形 的形状.(无需说明理由)
某大学为了解大学生对中国共产党党史知识的学习情况,在大学一年级和二年级举行有关党史知识测试活动.现从一、二两个年级中各随机抽取20名学生的测试成绩(满分50分,30分及30分以上为合格;40分及40分以上为优秀)进行整理、描述和分析,给出了下面的部分信息.
大学一年级20名学生的测试成绩为:
39,50,39,50,49,30,30,49,49,49,43,43,43,37,37,37,43,43,37,25.
大学二年级20名学生的测试成绩条形统计图如图所示;两个年级抽取的学生的测试成绩的平均数、众数、中位数、优秀率如下表所示:
年级 |
平均数 |
众数 |
中位数 |
优秀率 |
大一 |
|
|
43 |
|
大二 |
39.5 |
44 |
|
|
请你根据上面提供的所有信息,解答下列问题:
(1)上表中 , , , , ;
根据样本统计数据,你认为该大学一、二年级中哪个年级学生掌握党史知识较好?并说明理由(写出一条理由即可);
(2)已知该大学一、二年级共1240名学生参加了此次测试活动,通过计算,估计参加此次测试活动成绩合格的学生人数能否超过1000人;
(3)从样本中测试成绩为满分的一、二年级的学生中随机抽取两名学生,用列举法求两人在同一年级的概率.
如图,线段 与 表示某一段河的两岸, .综合实践课上,同学们需要在河岸 上测量这段河的宽度 与 之间的距离),已知河对岸 上有建筑物 、 ,且 米,同学们首先在河岸 上选取点 处,用测角仪测得 建筑物位于 北偏东 方向,再沿河岸走20米到达 处,测得 建筑物位于 北偏东 方向,请你根据所测数据求出该段河的宽度,(用非特殊角的三角函数或根式表示即可)
下面图片是七年级教科书中“实际问题与一元一次方程”的探究3.
探究3
电话计费问题
下表中有两种移动电话计费方式.
月使用费 元 |
主叫限定时间 |
主叫超时费 (元 |
被叫 |
|
方式一 |
58 |
150 |
0.25 |
免费 |
方式二 |
88 |
350 |
0.19 |
免费 |
考虑下列问题:
月使用费固定收: 主叫不超限定时间不再收费,主叫超时部分加收超时费,被叫免费. |
(1)设一个月内用移动电话主叫为 是正整数).根据上表,列表说明:当 在不同时间范围内取值时,按方式一和方式二如何计费.
(2)观察你的列表,你能从中发现如何根据主叫时间选择省钱的计费方式吗?通过计算验证你的看法.
小明升入初三再看这个问题,发现两种计费方式,每一种都是因主叫时间的变化而引起计费的变化,他把主叫时间视为在正实数范围内变化,决定用函数来解决这个问题.
(1)根据函数的概念,小明首先将问题中的两个变量分别设为自变量 和自变量的函数 ,请你帮小明写出:
表示问题中的 , 表示问题中的 .
并写出计费方式一和二分别对应的函数解析式;
(2)在给出的正方形网格纸上画出(1)中两个函数的大致图象,并依据图象写出如何根据主叫时间选择省钱的计费方式.(注 坐标轴单位长度可根据需要自己确定)
为了促进学生加强体育锻炼,某中学从去年开始,每周除体育课外,又开展了“足球俱乐部1小时”活动.去年学校通过采购平台在某体育用品店购买 品牌足球共花费2880元, 品牌足球共花费2400元,且购买 品牌足球数量是 品牌数量的1.5倍,每个足球的售价, 品牌比 品牌便宜12元.今年由于参加俱乐部人数增加,需要从该店再购买 、 两种足球共50个,已知该店对每个足球的售价,今年进行了调整, 品牌比去年提高了 , 品牌比去年降低了 ,如果今年购买 、 两种足球的总费用不超过去年总费用的一半,那么学校最多可购买多少个 品牌足球?
已知 是 的任意一条直径.
(1)用图1,求证: 是以直径 所在直线为对称轴的轴对称图形;
(2)已知 的面积为 ,直线 与 相切于点 ,过点 作 ,垂足为 ,如图2.
求证:① ;
②改变图2中切点 的位置,使得线段 时, .
已知抛物线 .
(1)通过配方可以将其化成顶点式为 ,根据该抛物线在对称轴两侧从左到右图象的特征,可以判断,当顶点在 轴 (填上方或下方),即 0(填大于或小于)时,该抛物线与 轴必有两个交点;
(2)若抛物线上存在两点 , , , ,分布在 轴的两侧,则抛物线顶点必在 轴下方,请你结合 、 两点在抛物线上的可能位置,根据二次函数的性质,对这个结论的正确性给以说明;(为了便于说明,不妨设 且都不等于顶点的横坐标;另如果需要借助图象辅助说明,可自己画出简单示意图)
(3)根据二次函数(1)(2)结论,求证:当 , 时, .