2019年全国统一高考文科数学试卷(新课标Ⅰ)
古希腊时期,人们认为最美人体的头顶至肚脐的长度与肚脐至足底的长度之比是 ( ≈0.618,称为黄金分割比例),著名的"断臂维纳斯"便是如此.此外,最美人体的头顶至咽喉的长度与咽喉至肚脐的长度之比也是 .若某人满足上述两个黄金分割比例,且腿长为105cm,头顶至脖子下端的长度为26 cm,则其身高可能是( )
A. |
165 cm |
B. |
175 cm |
C. |
185 cm |
D. |
190cm |
某学校为了解1000名新生的身体素质,将这些学生编号为1,2,…,1 000,从这些新生中用系统抽样方法等距抽取100名学生进行体质测验,若46号学生被抽到,则下面4名学生中被抽到的是( )
A. |
8号学生 |
B. |
200号学生 |
C. |
616号学生 |
D. |
815号学生 |
如图是求 的程序框图,图中空白框中应填入( )
A. |
A= |
B. |
A= |
C. |
A= |
D. |
A= |
双曲线 C: 的 一条渐近线的倾斜角为130°,则C的离心率为( )
A. |
2sin40° |
B. |
2cos40° |
C. |
|
D. |
|
△ ABC的内角 A, B, C的对边分别为 a, b, c,已知 asin A- bsin B=4 csin C,cos A=- ,则 =( )
A. |
6 |
B. |
5 |
C. |
4 |
D. |
3 |
已知椭圆C的焦点为 ,过 F 2的直线与 C交于 A, B两点.若 , ,则 C的方程为( )
A. |
|
B. |
|
C. |
|
D. |
|
已知∠ACB=90°,P为平面ABC外一点,PC=2,点P到∠ACB两边AC,BC的距离均为 ,那么P到平面ABC的距离为___________.
某商场为提高服务质量,随机调查了50名男顾客和50名女顾客,每位顾客对该商场的服务给出满意或不满意的评价,得到下面列联表:
满意 |
不满意 |
|
男顾客 |
40 |
10 |
女顾客 |
30 |
20 |
(1)分别估计男、女顾客对该商场服务满意的概率;
(2)能否有95%的把握认为男、女顾客对该商场服务的评价有差异?
附: .
P( K 2≥ k) |
0.050 |
0.010 |
0.001 |
k |
3.841 |
6.635 |
10.828 |
记Sn为等差数列{an}的前n项和,已知S9=-a5.
(1)若a3=4,求{an}的通项公式;
(2)若a1>0,求使得Sn≥an的n的取值范围.
如图,直四棱柱 ABCD-A 1 B 1 C 1 D 1的底面是菱形, AA 1=4, AB=2,∠ BAD=60°, E, M, N分别是 BC, BB 1, A 1 D的中点.
(1)证明: MN∥平面 C 1 DE;
(2)求点 C到平面 C 1 DE的距离.
已知函数 f( x)=2sin x- xcos x- x, f′( x)为 f( x)的导数.
(1)证明: f′( x)在区间(0, π)存在唯一零点;
(2)若 x∈[0,π]时, f( x)≥ ax,求 a的取值范围.
已知点A,B关于坐标原点O对称,│AB│ =4,⊙M过点A,B且与直线x+2=0相切.
(1)若A在直线x+y=0上,求⊙M的半径.
(2)是否存在定点P,使得当A运动时,│MA│-│MP│为定值?并说明理由.
在直角坐标系xOy中,曲线C的参数方程为 (t为参数),以坐标原点O为极点,x轴的正半轴为极轴建立极坐标系,直线l的极坐标方程为 .
(1)求C和l的直角坐标方程;
(2)求C上的点到l距离的最小值.