2012年全国统一高考文科数学试卷(江西卷)
复数 (为虚数单位), 是 的共轭复数,则 的虚部为()
A. | 0 | B. | -1 | C. | 1 | D. | -2 |
观察下列事实: 的不同整数解 的个数为 , 的不同整数解 的个数为 , 的不同整数解 的个数为 则 的不同整数解 的个数为()
A. | 76 | B. | 80 | C. | 86 | D. | 92 |
小波一星期的总开支分布如图1所示,一星期的食品开支分布如图2所示,则小波一星期的鸡蛋开支占总开支的百分比为()
A. | 30% | B. | 10% | C. | 3% | D. | 不能确定 |
椭圆 的左,右顶点分别是 ,左,右焦点分别是 ,若 成等比数列,则此椭圆的离心率为()
A. | B. | C. | D. |
如图, (单位:m), (单位:m), 与 的夹角为,以A为圆心, 为半径作圆弧 与线段 延长线交与点 .甲,乙两质点同时从点 出发,甲先以速度1(单位:ms)沿线段 行至点 ,在以速度3(单位:ms)延圆弧 乙以速率2(单位:m/s)沿线段 行至 点后停止。设 时刻甲、乙所到的两点连与它们经过的路径所围成图形的面积为 ,则函数 的图像大致是()
A. | |
B. | |
C. | |
D. |
如图,从 , , , , , ,这6个点中随机选取3个点。
(Ⅰ)求这3点与原点 恰好是正三棱锥的四个顶点的概率;
(Ⅱ)求这3点与原点
共面的概率。
如图,梯形 中, 是线段 上的两点,且 .现将△ 分别沿 折起,使两点 重合于点 ,得到多面体 .
(1)求证:平面 平面 ;
(2)求多面体 的体积
已知三点 ,曲线上一点 满足
(1)求曲线的方程
(2)点 是曲线C上的动点,曲线C在点Q处的切线为L,点P的坐标是(0,1), L与PA,PB分别交于点D,E,求 与 的面积之比。