[河北]2012届河北省石家庄市高三第二次模拟理科数学试卷
若F(5,0)是双曲线(m是常数)的一个焦点,则m的值为
A.3 | B.5 | C.7 | D.9 |
已知向量a=(1,2),b=(2,3),则是向量与向量n=(3,-1)夹角为钝角的
A.充分而不必要条件 | B.必要而不充分条件 |
C.充要条件 | D.既不充分也不必要的条件 |
从某高中随机选取5名高三男生,其身高和体重的数据如下表所示:
根据上表可得回归直线方程,据此模型预报身高为172 cm的高三男生的体重为
A.70.09 | B.70.12 | C.70.55 | D.71.05 |
已知长方形ABCD,抛物线l以CD的中点E为顶点,经过A、B两点,记拋物线l与AB边围成的封闭区域为M.若随机向该长方形内投入一粒豆子,落入区域M的概率为P.则下列结论正确的是
A.不论边长AB,CD如何变化,P为定值;
B.若-的值越大,P越大;
C.当且仅当AB=CD时,P最大;
D.当且仅当AB=CD时,P最小.
设不等式组表示的平面区域为Dn an表示区域Dn中整点的个数(其中整点是指横、纵坐标都是整数的点),则=
A.1012 | B.2012 | C.3021 | D.4001 |
己知F1 F2是椭圆(a>b>0)的两个焦点,若椭圆上存在一点P使得,则椭圆的离心率e的取值范围为________.
在平行四边形ABCD中有,类比这个性质,在平行六面体中ABCD-A 1B1C1D1中有=________
已知Sn是等比数列{an}的前n项和,S4、S10、S7成等差数列.
(I )求证而a3,a9,a6成等差数列;
(II)若a1=1,求数列{a3n}的前n项的积
我国是世界上严重缺水的国家之一,城市缺水问题较为突出.某市为了节约生活用水,计划在本市试行居民生活用水定额管理(即确定一个居民月均用水量标准〜用水量不超过a的部分按照平价收费,超过a的部分按照议价收费).为了较为合理地确定出这个标准,通过抽样获得了 100位居民某年的月均用水量(单位:t),制作了频率分布直方图,
(I)由于某种原因频率分布直方图部分数据丢失,请在图中将其补充完整;
(II)用样本估计总体,如果希望80%的居民每月的用水量不超出标准&则月均用水量的最低标准定为多少吨,并说明理由;
(III)若将频率视为概率,现从该市某大型生活社区随机调查3位居民的月均用水量(看作有放回的抽样),其中月均用水量不超过(II)中最低标准的人数为x,求x的分布列和均值.
在三棱柱ABC-A1B1C1中,侧面ABB1A1为矩形,AB=1,,D为AA1中点,BD与AB1交于点0,C0丄侧面ABB1A1
(I )证明:BC丄AB1;
(II)若OC=OA,求二面角C1-BD-C的余弦值.
在平面直角坐标系中,已知直线l:y=-1,定点F(0,1),过平面内动点P作PQ丄l于Q点,且•
(I )求动点P的轨迹E的方程;
(II)过点P作圆的两条切线,分别交x轴于点B、C,当点P的纵坐标y0>4时,试用y0表示线段BC的长,并求ΔPBC面积的最小值.
已知函数(a ,bR,e为自然对数的底数),.
(I )当b=2时,若存在单调递增区间,求a的取值范围;
(II)当a>0 时,设的图象C1与的图象C2相交于两个不同的点P、Q,过线段PQ的中点作x轴的垂线交C1于点,求证.
已知四边形ACBE,AB交CE于D点,,BE2=DE-EC.
(I)求证:;
(II)求证:A、E、B、C四点共圆.
在平面直角坐标系xOy中,以O为极点,X轴的正半轴为极轴,取与直角坐标系相同的长度单位建立极坐标系.曲线C1的参数方程为:(为参数);射线C2的极坐标方程为:,且射线C2与曲线C1的交点的横坐标为
(I )求曲线C1的普通方程;
(II)设A、B为曲线C1与y轴的两个交点,M为曲线C1上不同于A、B的任意一点,若直线AM与MB分别与x轴交于P,Q两点,求证|OP|.|OQ|为定值.