上海市高三下学期教学质量抽样分析考试试题(理)
如图所示:在△ABC中,=,=,延长AB到D,使BD=AB,连接CD,则用,表示= .
已知数列是公差为的等差数列,其前项和为,并有=++;那么,对于公比为的等比数列,设其前项积为,则,,及满足的一个关系式是 .
已知数列的前项和为,点列,在函数=的图像上.数列满足:对任意的正整数都有0<<,且=2成立,则数列可能的一个通项公式是 .
设点A为圆+=1上的动点,PA是圆的切线,且|PA|=1,则P点的轨迹方程为( )
A.+=4; | B.=2; | C.+=2; | D.=-2. |
“|-1|<2成立”是“<0成立”的( )
A.充要条件; | B.必要不充分条件; |
C.充分不必要条件; | D.既不充分也不必要条件. |
已知函数存在反函数,方程-=0的解集是P,方程-=0的解集是Q,则一定有( )
A.PQ; | B.QP; | C.P=Q; | D.P∩Q=. |
若函数满足=||,则称为对等函数,
(1)存在幂函数是对等函数;
(2)存在指数函数是对等函数;
(3)对等函数的积是对等函数.
那么,在上述命题中,真命题的个数是( )
A.0; | B.1; | C.2; | D.3. |
(本题满分12分,第(1)小题5分,第(2)小题7分)
已知锐角△ABC中,三个内角为A、B、C,向量=2-2,+,=-,1+,∥.
(1)求∠A的大小;
(2)求函数=2+取得最大值时,∠B的大小.
(本题满分14分,第(1)小题6分,第(2)小题8分)
四棱锥P-ABCD中,PD⊥平面ABCD,PA与平面ABCD所成的角为60,在四边形ABCD中,∠ADC=∠DAB=90,AB=4,CD=1,AD=2.
(1)求四棱锥P-ABCD的体积;
(2)求异面直线PA与BC所成的角.
(本题满分16分,第(1)小题6分,第(2)小题10分)
某团体计划于2011年年初划拨一笔款项用于设立一项基金,这笔基金由投资公司运作,每年可有3%的受益.
(1)该笔资金中的A(万元)要作为保障资金,每年年末将本金A及A的当年受益一并作为来年的投资继续运作,直到2020年年末达到250(万元),求A的值;
(2)该笔资金中的B(万元)作为奖励资金,每年年末要从本金B及B的当年受益中支取250(万元),余额来年继续运作,并计划在2020年年末支取后该部分资金余额为0,求B的值.(A和B的结果以万元为单位,精确到万元)
(本题满分18分,第(1)小题4分,第(2)小题6分,第(3)小题8分)已知直线:=+>0交抛物线C:=2>0于A、B两点,M是线段AB的中点,过M作轴的垂线交C于点N.
(1)若直线过抛物线C的焦点,且垂直于抛物线C的对称轴,试用表示|AB|;
(2)证明:过点N且与AB平行的直线和抛物线C有且仅有一个公共点;
(3)是否存在实数,使=0.若存在,求出的所有值;若不存在,说明理由.