广东省高考冲刺强化训练试卷七文科数学
在复平面内复数对应的点位于
A.一、三象限的角平分线上 | B.二、四象限的角平分线上 |
C.实轴上 | D.虚轴上 |
若为一条直线,为三个互不重合的平面,给出下面
三个命题: ① ,
②∥,
③ ∥
其中正确的命题有
A.个 | B.个 | C.个 | D.个 |
△ABC内有任意三点不共线的2006个点,加上三个顶点,共2009个点,把这2009个点连线形成互不重叠(即任意两个三角形之间互不覆盖)的小三角形,则一共可以形成小三角形的个数为
A.4010 | B.4011 | C.4012 | D.4013 |
某中学号召学生在暑假期间至少参加一次社会公益活动(以下简
称活动).该校文学社共有100名学生,他们参加活动的次数统计如
图所示.则从文学社中任意选1名学生,他参加活动次数为3的概率
是 、该文学社学生参加活动的人均次数为 .
设函数上的奇函数,且满足都成立,又
当时,,则下列四个命题:
①函数以4为周期的周期函数; ②当[1,3]时,;
③函数的图象关于对称; ④函数的图象关于点(2,0)对称.
其中正确的命题序号是 .
(几何证明选讲选做题)如图2所示,与是⊙O
的直径,,是延长线上一点,连交
⊙O于点,连交于点,若,
则 .
(本小题满分12分)
已知集合,在平面直角坐标系中,点的坐标x∈A,y∈A.计算:
(1)点正好在第二象限的概率;
(2)点不在x轴上的概率;
(3)点正好落在区域上的概率.
(本小题满分14分)
如图,四边形ABCD为矩形,AD⊥平面ABE,AE=EB=BC=2,为上的点,且BF
⊥平面ACE.
(1)求证:AE⊥BE;
(2)求三棱锥D-AEC的体积;
(3)设M在线段AB上,且满足AM=2MB,试
在线段CE上确定一点N,使得MN∥平面DAE.
(本小题满分14分)
已知,(),直线与函数、的图像都相切,且与函数的图像的切点的横坐标为1.
(1)求直线的方程及的值;
(2)若(其中是的导函数),求函数的最大值;
(3)当时,比较与.
(本小题满分14分)
已知椭圆的焦点F与抛物线C:的焦点关于直线x-y=0
对称.
(Ⅰ)求抛物线的方程;
(Ⅱ)已知定点A(a,b),B(-a,0)(ab),M是抛物线C上的点,设直线AM,
BM与抛物线的另一交点为.求证:当M点在抛物线上变动时(只要存在
且)直线恒过一定点,并求出这个定点的坐标.