2014年高考数学(理)二轮专题复习知能提升演练1-5-2练习卷
设l是直线,α,β是两个不同的平面 ( ).
A.若l∥α,l∥β,则α∥β |
B.若l∥α,l⊥β,则α⊥β |
C.若α⊥β,l⊥α,则l⊥β |
D.若α⊥β,l∥α,则l⊥β |
已知三棱柱ABC-A1B1C1的侧棱与底面垂直,体积为,底面是边长为的正三角形.若P为底面A1B1C1的中心,则PA与平面ABC所成角的大小为 ( ).
A. | B. | C. | D. |
设a,b是不同的直线,α,β是不同的平面,则下列命题:
①若a⊥b,a∥α,则b∥α;②若a∥α,α⊥β,则a⊥β;
③若a⊥β,α⊥β,则a∥α;④若a⊥b,a⊥α,b⊥β,则α⊥β.
其中正确命题的个数是 ( ).
A.0 | B.1 | C.2 | D.3 |
如图所示,四棱锥S-ABCD的底面为正方形,SD⊥底面ABCD,则下列结论中不正确的是 ( ).
A.AC⊥SB |
B.AB∥平面SCD |
C.SA与平面SBD所成的角等于SC与平面SBD所成的角 |
D.AB与SC所成的角等于DC与SA所成的角 |
如图所示,在四边形ABCD中,AD∥BC,AD=AB,∠BCD=45°,∠BAD=90°.将△ADB沿BD折起,使平面ABD⊥平面BCD,构成三棱锥A-BCD.则在三棱锥A-BCD中,下列命题正确的是( ).
A.平面ABD⊥平面ABC |
B.平面ADC⊥平面BDC |
C.平面ABC⊥平面BDC |
D.平面ADC⊥平面ABC |
如图,在正方体ABCD-A1B1C1D1中,AB=2,点E为AD的中点,点F在CD上.若EF∥平面AB1C,则线段EF的长度等于________.
如图,PA⊥⊙O所在的平面,AB是⊙O的直径,C是⊙O上的一点,E,F分别是点A在PB,PC上的射影,给出下列结论:
①AF⊥PB;②EF⊥PB;③AF⊥BC;④AE⊥平面PBC.其中正确命题的序号是________.
如图,正方体ABCD-A1B1C1D1的棱长为1,P为BC的中点,Q为线段CC1上的动点,过点A,P,Q的平面截该正方体所得的截面记为S.则下列命题正确的是________(写出所有正确命题的编号).
①当0<CQ<时,S为四边形;
②当CQ=时,S为等腰梯形;
③当<CQ<1时,S为六边形;
④当CQ=1时,S的面积为.
如图,AB是圆O的直径,PA垂直圆O所在的平面,C是圆O上的点.
(1)求证:BC⊥平面PAC;
(2)设Q为PA的中点,G为△AOC的重心,求证:QG∥平面PBC.
在直角梯形ABCD中,AB∥CD,AD⊥AB,CD=2AB=4,AD=,E为CD的中点,将△BCE沿BE折起,使得CO⊥DE,其中垂足O在线段DE内.
(1)求证:CO⊥平面ABED;
(2)问∠CEO(记为θ)多大时,三棱锥C-AOE的体积最大,最大值为多少.