高考数学全程总复习课时提升作业七十二第十章第九节练习卷
若随机变量X的分布列如表:则E(X)=( )
X |
0 |
1 |
2 |
3 |
4 |
5 |
P |
2x |
3x |
7x |
2x |
3x |
x |
(A) (B) (C) (D)
随机变量ξ的分布列如下:
ξ |
-1 |
0 |
1 |
P |
a |
b |
c |
其中a,b,c成等差数列,若E(ξ)=,则D(ξ)的值是( )
(A) (B) (C) (D)
若随机变量X~B(100,p),X的数学期望E(X)=24,则p的值是( )
A. | B. | C. | D. |
若X是离散型随机变量,P(X=x1)=,P(X=x2)=,且x1<x2,又已知E(X)=,D(X)=,则x1+x2的值为( )
A. | B. | C.3 | D. |
已知随机变量X~B(6,),则P(-2≤X≤5.5)=( )
A. | B. | C. | D. |
利用下列盈利表中的数据进行决策,应选择的方案是( )
A.A1 | B.A2 | C.A3 | D.A4 |
若随机变量ξ的分布列为:P(ξ=m)=,P(ξ=n)=a.若E(ξ)=2,则D(ξ)的最小值等于 .
某毕业生参加人才招聘会,分别向甲、乙、丙三个公司投递了个人简历.假定该毕业生得到甲公司面试的概率为,得到乙、丙两公司面试的概率均为p,且三个公司是否让其面试是相互独立的.记X为该毕业生得到面试的公司个数.若P(X=0)=,则随机变量X的数学期望E(X)= .
抛掷两枚骰子,至少有一个4点或5点出现时,就说这次试验成功,则在10次试验中,成功次数X的期望是 .
设一次试验成功的概率为p,进行100次独立重复试验,当p=_______时,成功次数的标准差的值最大,其最大值为 .
一个篮球运动员投篮一次得3分的概率为a,得2分的概率为b,不得分的概率为c,a,b,c∈(0,1),且无其他得分情况,已知他投篮一次得分的数学期望为1,则ab的最大值为 .
近几年来,我国许多地区经常出现干旱现象,为抗旱经常要进行人工降雨.现由天气预报得知,某地在未来5天的指定时间的降雨概率是:前3天均为50%,后2天均为80%,5天内任何一天的该指定时间没有降雨,则在当天实行人工降雨,否则,当天不实施人工降雨.
(1)求至少有1天需要人工降雨的概率.
(2)求不需要人工降雨的天数x的分布列和期望.
某商店储存的50个灯泡中,甲厂生产的灯泡占60%,乙厂生产的灯泡占40%,甲厂生产的灯泡的一等品率是90%,乙厂生产的灯泡的一等品率是80%.
(1)若从这50个灯泡中随机抽取出1个灯泡(每个灯泡被取出的机会均等),则它是甲厂生产的一等品的概率是多少?
(2)若从这50个灯泡中随机抽取出2个灯泡(每个灯泡被取出的机会均等),这2个灯泡中是甲厂生产的一等品的个数记为ξ,求E(ξ)的值.
甲、乙两运动员进行射击训练,已知他们击中目标的环数都稳定在7,8,9,10环,且每次射击成绩互不影响,射击环数的频率分布表如下:
甲运动员
射击环数 |
频数 |
频率 |
7 |
10 |
0.1 |
8 |
10 |
0.1 |
9 |
x |
0.45 |
10 |
35 |
y |
合计 |
100 |
1 |
乙运动员
射击环数 |
频数 |
频率 |
7 |
8 |
0.1 |
8 |
12 |
0.15 |
9 |
z |
|
10 |
|
0.35 |
合计 |
80 |
1 |
若将频率视为概率,回答下列问题:
(1)求甲运动员射击1次击中10环的概率.
(2)求甲运动员在3次射击中至少有1次击中9环以上(含9环)的概率.
(3)若甲运动员射击2次,乙运动员射击1次,ξ表示这3次射击中击中9环以上(含9环)的次数,求ξ的分布列及E(ξ).
一个口袋装有n个红球(n≥5且n∈N)和5个白球,一次摸奖从中摸2个球(每次摸奖后放回),2个球颜色不同则为中奖.
(1)试用n表示一次摸奖中奖的概率.
(2)若n=5,求3次摸奖的中奖次数ξ=1的概率及数学期望.
(3)记3次摸奖恰有1次中奖的概率为P,当n取多少时,P最大?
为缓解某路段交通压力,计划将该路段实施“交通限行”.在该路段随机抽查了50人,了解公众对“该路段限行”的态度,将调查情况进行整理,制成下表:
年龄 (岁) |
[15,25) |
[25,35) |
[35,45) |
[45,55) |
[55,65) |
[65,75] |
频 数 |
5 |
10 |
15 |
10 |
5 |
5 |
赞成 人数 |
4 |
8 |
9 |
6 |
4 |
3 |
(1)作出被调查人员年龄的频率分布直方图.
(2)若从年龄在[15,25),[25,35)的被调查者中各随机选取两人进行追踪调查,记选中的4人中不赞成“交通限行”的人数为ξ,求随机变量ξ的分布列和数学期望.