高考名师推荐数学文科解答题前三题
如图,已知四棱锥P﹣ABCD的底面是直角梯形,∠ABC=∠BCD=90°,AB=BC=2CD=2,PB=PC=3,侧面PBC⊥底面ABCD,O是BC的中点.
(1)求证:DC∥平面PAB;
(2)求四棱锥P﹣ABCD的体积.
三棱柱的直观图和三视图如下图所示,其侧视图为正三角形(单位cm)
⑴当x=4时,求几何体的侧面积和体积
⑵当x取何值时,直线AB1与平面BB1C1C和平面A1B1C1所成角大小相等。
已知函数在区间 上的最大值为2.
(1)求常数的值;
(2)在中的角,,所对的边是,,,若,面积为. 求边长.
已知等差数列的公差大于零,且是方程的两个根;各项均为正数的等比数列的前项和为,且满足,
(1)求数列、的通项公式;
(2)若数列满足,求数列的前n项和.
设等差数列{an}的首项a1为a,公差d=2,前n项和为Sn.
(1) 若当n=10时,Sn取到最小值,求的取值范围;
(2) 证明:n∈N*, Sn,Sn+1,Sn+2不构成等比数列.
如图,在四棱锥P—ABCD中,侧面PAD是正三角形,且垂直于底面ABCD,底面ABCD是边长为2的菱形,∠BAD=60°,M为PC的中点.
(1)求证:PA//平面BDM;
(2)求直线AC与平面ADM所成角的正弦值.
如图,已知四棱锥P-ABCD的底面ABCD是菱形,且PC⊥平面ABCD,PC=AC=2,E是PA的中点。
(1)求证:AC⊥平面BDE;
(2)若直线PA与平面PBC所成角为30°,求二面角P-AD-C的正切值;
(3)求证:直线PA与平面PBD所成的角φ为定值,并求sinφ值。
在△ABC中,角A、B、C所对的边分别为a、b、c,向量 ,.已知 .
(1)若,求角A的大小;
(2)若,求的取值范围。