江西省鹰潭市高三第二次模拟考试文科数学试卷
已知条件:,条件:,则是的( )
A.充分不必要条件 | B.必要不充分条件 |
C.充要条件 | D.既非充分也非必要条件 |
某一容器的三视图如右图所示,现向容器中匀速注水,容器中水面的高度随时间变化的可能图象是( )
阅读如下程序框图,若输出,则空白的判断框中应填入的条件是 ( )
A. | B. | C. | D. |
在长为的线段上任取一点,并且以线段为边作正三角形,则这个正三角形
的面积介于与之间的概率为( )
A. | B. | C. | D. |
某产品的广告费用x与销售额y的统计数据如下表:
广告费用x(万元) |
4 |
2 |
3 |
5 |
销售额y(万元) |
49 |
26 |
39 |
58 |
根据上表可得回归方程中的,据此模型预报广告费用为万元时销售额为( ).
A.万元 B.万元 C.万元 D.万元
设是平面直角坐标系中不同的四点,若且,则称是关于的“好点对”.已知是关于的“好点对”, 则下面说法正确的是( )
A.可能是线段的中点 |
B.可能同时在线段延长线上 |
C.可能同时在线段上 |
D.不可能同时在线段的延长线上 |
已知、、是单位圆上互不相同的三个点,且满足,则
的最小值是( )
A. | B. | C. | D. |
近年来,我国很多城市都出现了严重的雾霾天气.为了更好地保护环境,2012年国家环保部发布了新修订的《环境空气质量标准》,其中规定:居民区 的PM2.5的年平均浓度不得超过35微克/立方米.某城市环保部门在2014年1月1日到 2014年3月31日这90天对某居民区的PM2. 5平均浓度的监测数据统计如下:
组别 |
PM2.5浓度(微克/立方米) |
频数(天) |
第一组 |
(0,35] |
24 |
第二组 |
(35,75] |
48 |
第三组 |
(75,115] |
12 |
第四组 |
>115 |
6 |
(1)在这天中抽取天的数据做进一步分析,每一组应抽取多少天?
(2)在(I)中所抽取的样本PM2. 5的平均浓度超过75(微克/立方米)的若干天中,随 机抽取2天,求至少有一天平均浓度超过115(微克/立方米)的概率.
如图,在长方体中,.
(1)若点在对角线上移动,求证:⊥;
(2)当为棱中点时,求点到平面的距离。
已知数列满足().
(1)若数列是等差数列,求数列的前项和;
(2)证明:数列不可能是等比数列.
如图,已知椭圆的右焦点为,点是椭圆上任意一点,圆是以为直径的圆.
(1)若圆过原点,求圆的方程;
(2)写出一个定圆的方程,使得无论点在椭圆的什么位置,该定圆总与圆相切,请写出你的探究过程.