江苏省南京市高三9月调研考试理科数学试卷
某学校高一、高二、高三年级的学生人数之比为4:3:3,现用分层抽样的方法从该校高中三个年级的学生中抽取容量为80的样本,则应从高一年级抽取 名学生.
在△ABC中,角A,B,C所对边的长分别为a,b,c.已知a+c=2b,sinB=sinC,
则cosA= .
记数列{an}的前n项和为Sn.若a1=1,Sn=2(a1+an)(n≥2,n∈N*),则Sn= .
在平面直角坐标系xOy中,已知圆C:x2+y2-6x+5=0,点A,B在圆C上,且AB=2,则的最大值是 .
已知函数f(x)=x-1-(e-1)lnx,其中e为自然对数的底,则满足f(ex)<0的x的取值范围
为 .
已知函数f(x)=2sin(2x+φ)(0<φ<2π)的图象过点(,-2).
(1)求φ的值;
(2)若f()=,-<α<0,求sin(2α-)的值.
如图,三棱柱ABC-A1B1C1中,M,N分别为AB,B1C1的中点.
(1)求证:MN∥平面AA1C1C;
(2)若CC1=CB1,CA=CB,平面CC1B1B⊥平面ABC,求证:AB^平面CMN.
已知{an}是等差数列,其前n项的和为Sn, {bn}是等比数列,且a1=b1=2,a4+b4=21,
S4+b4=30.
(1)求数列{an}和{bn}的通项公式;
(2)记cn=anbn,n∈N*,求数列{cn}的前n项和.
给定椭圆C: (a>b>0),称圆C1:x2+y2=a2+b2为椭圆C的“伴随圆”.已知椭圆C的离心率为,且经过点(0,1).
(1)求实数a,b的值;
(2)若过点P(0,m)(m>0)的直线l与椭圆C有且只有一个公共点,且l被椭圆C的伴随圆C1所截得的弦长为2,求实数m的值.
如图(示意),公路AM、AN围成的是一块顶角为α的角形耕地,其中tanα=-2.在该块土地中P处有一小型建筑,经测量,它到公路AM,AN的距离分别为3km,km.现要过点P修建一条直线公路BC,将三条公路围成的区域ABC建成一个工业园.为尽量减少耕地占用,问如何确定B点的位置,使得该工业园区的面积最小?并求最小面积.
已知函数f(x)=ax3+|x-a|,aR.
(1)若a=-1,求函数y=f(x) (x [0,+∞))的图象在x=1处的切线方程;
(2)若g(x)=x4,试讨论方程f(x)=g(x)的实数解的个数;
(3)当a>0时,若对于任意的x1 [a,a+2],都存在x2 [a+2,+∞),使得f(x1)f(x2)=1024,求满足条件的正整数a的取值的集合.
如图,PA是圆O的切线,A为切点,PO与圆O交于点B、C,AQ^OP,垂足为Q.若PA=4,PC=2,求AQ的长.
已知矩阵A=属于特征值l的一个特征向量为α= .
(1)求实数b,l的值;
(2)若曲线C在矩阵A对应的变换作用下,得到的曲线为C¢:x2+2y2=2,求曲线C的方程.
在平面直角坐标系xOy中,已知直线l的参数方程为 (t为参数 ),圆C的参数方程为 (θ为参数).若点P是圆C上的动点,求点P到直线l的距离的最小值.
如图,已知长方体ABCD-A1B1C1D1中,AB=3,BC=2,CC1=5,E是棱CC1上不同于端点的点,且.
(1) 当∠BEA1为钝角时,求实数λ的取值范围;
(2) 若λ=,记二面角B1-A1B-E的的大小为θ,求|cosθ|.