四川省绵阳市高三一诊测试文科数学试卷
已知集合A={x∈Z|x2-1≤0},B={x|x2-x-2=0},则A∩B=( )
| A.Æ | B.{-1} | C.{0} | D.{2} |
已知
是定义在(0,+∞)上的函数,对任意两个不相等的正数x1,x2,都有
,记
,则 ( )
A.![]() |
B.![]() |
C.![]() |
D.![]() |
记函数
在
的值域为M,g(x)=(x+1)2+a在
的值域为N,若
,则实数a的取值范围是( )
A.a≥![]() |
B.a≤![]() |
C.a≥![]() |
D.a≤![]() |
已知向量a=(1,2),b=(2,0),若向量λa+b与向量c=(1,-2)共线,则实数λ= ______.
定义:如果函数
在定义域内给定区间
上存在
,满足
,则称函数
是
上的“平均值函数”,
是它的一个均值点.例如
是
上的平均值函数,0就是它的均值点.若函数
是
上的“平均值函数”,则实数m的取值范围是_________.
已知向量m=(sinωx,cosωx),n=(cosωx,cosωx),其中ω>0,函数
2m·n-1的最小正周期为π.
(1)求ω的值;
(2)求函数
在[
,
]上的最大值.
已知函数f (t)=log2(2-t)+
的定义域为D.
(1)求D;
(2)若函数g (x)=x2+2mx-m2在D上存在最小值2,求实数m的值.
在△ABC中,a,b,c分别是内角A,B,C的对边,
.
(1)若
,求△ABC的面积S△ABC;
(2)若
是边
中点,且
,求边
的长.
记公差不为0的等差数列
的前
项和为
,S3=9,
成等比数列.
(1)求数列
的通项公式
及
;
(2)若
, n=1,2,3, ,问是否存在实数
,使得数列
为单调递增数列?若存在,请求出
的取值范围;不存在,请说明理由.
已知函数
(e为自然对数的底数),a>0.
(1)若函数
恰有一个零点,证明:
;
(2)若
≥0对任意x∈R恒成立,求实数a的取值集合.





,
”的否定是( )
,
≤1
,
,2x≤1
(n≥1),若
,则a3=( )

=( )


,那么
=( )



则2x-y的最大值为( )
)内,使|sinx|≥cosx成立的x的取值范围为( )


∪






的图象上关于
轴对称的点至少有3对,则实数
的取值范围是( )



,则
_______.
是函数f(x)的导函数,
,则
=________.
, 则f (
)+f (
)+f (
)+…+f (
)=________.
∈R).
,求
点(
)处的切线方程;
,
,试比较
与
的大小.
粤公网安备 44130202000953号