某池塘中野生水葫芦的面积与时间的函数关系的图象,如图所示.假设其关系为指数函数,并给出下列说法:
①此指数函数的底数为;
②在第个月时,野生水葫芦的面积就会超过
;
③野生水葫芦从蔓延到
只需
个月;
④设野生水葫芦蔓延到,
,
所需的时间分别为
,
,
,则有
;
⑤野生水葫芦在第到第
个月之间蔓延的平均速度等于在第
到第
个月之间蔓延的平均速度.
其中正确的说法有 .(请把正确说法的序号都填在横线上)
下面是两个变量的一组数据:
X |
1 |
2 |
3 |
4 |
5 |
6 |
7 |
8 |
y |
1 |
4 |
9 |
16 |
25 |
36 |
49 |
64 |
则这两个变量之间的线性回归方程是( )
A.y=-16+9x B.y=31-x C.y=30-x D.y=-15+9x
某公司的广告费支出x与销售额y(单位:万元)之间有下列对应数据
x |
2 |
4 |
5 |
6 |
8 |
y |
30 |
40 |
60 |
50 |
70 |
(1)画出散点图,并判断广告费与销售额是否具有相关关系;
(2)根据表中提供的数据,用最小二乘法求出y与x的回归方程;
(3)预测销售额为115万元时,大约需要多少万元广告费。
参考公式:回归方程为其中
,
在一次数学实验中,运用计算器采集到如下一组数据:
x |
-2.0 |
-1.0 |
0 |
1.00 |
2.00 |
3.00 |
y |
0.24 |
0.51 |
1 |
2.02 |
3.98 |
8.02 |
则x,y的函数关系与下列哪类函数最接近(其中,a,b为待定系数)( )
A.y=a+bx B.y=a+bx
C.y=a+logbx D.y=a+
某单位为了了解用电量度与气温
之间的关系,随机统计了某
天的用电量与当天气温,并制作了对照表
由表中数据得回归直线方程中
,预测当气温为
时,用电量的度数是 .
下表提供了某厂节能降耗技术改造后生产甲产品过程中记录的产量(吨)与相应的生产能耗
(吨标准煤)的几组对照数据
![]() |
3 |
4 |
5 |
6 |
![]() |
2.5 |
3 |
4 |
4.5 |
()
(1)请根据上表提供的数据,用最小二乘法求出关于
的线性回归方程
;
(2)已知该厂技术改造前100吨甲产品能耗为90吨标准煤.试根据(1)求出的线性回归方程,预测生产100吨甲产品的生产能耗比技术改造前降低多少吨标准煤?
.已知某种产品的支出广告额与利润额
(单位:万元)之间有如下对应数据:
x |
3 |
4 |
5 |
6 |
7 |
y |
20 |
30 |
30 |
40 |
60 |
则回归直线方程必过( )
A.(5,30) B.(4,30) C.(5,35) D.(5,36)
某种产品的广告费支出x与销售额y之间有如下对应数据(单位:百万元).
x |
2 |
4 |
5 |
6 |
8 |
y |
30 |
40 |
60 |
t |
70 |
根据上表求出y关于x的线性回归方程为=6.5x+17.5,则表中t的值为_ .
下图所给4个图象中,与所给3件事吻合最好的顺序为( )
(1)小明离开家不久,发现自己把作业本忘在家里了,于是立刻返回家里取了作业本再上学;
(2)小明骑着车一路以常速行驶,只是在途中遇到一次交通堵塞,耽搁了一些时间;
(3)小明出发后,心情轻松,缓缓行进,后来为了赶时间开始加速.
A.(1)(2)(4) | B.(4)(2)(3) | C.(4)(1)(3) | D.(4)(1)(2) |
(本小题满分12分)
某研究机构对高三学生的记忆力和判断力
进行统计分析,得下表数据:
x |
6 |
8 |
10 |
12 |
y |
2 |
3 |
5 |
6 |
(1)画出散点图并指出与
之间是正相关还是负相关 ;
(2)请根据上表提供的数据,用最小二乘法求出关于
的线性回归方程
;
其中()
(3)记忆力为14的同学的判断力约为多少?
试题篮
()