(本小题满分12分)已知函数f(x)=x2-2(a+1)x+2alnx(a>0).
(1)当a=1时,求曲线y=f(x)在点(1,f(1))处的切线方程;
(2)求f(x)的单调区间;
(3)若f(x)≤0在区间[1,e]上恒成立,求实数a的取值范围.
设函数,则下列结论正确的是( )
A.函数上单调递增 |
B.函数上单调递减 |
C.若,则函数的图象在点处的切线方程为y=10 |
D.若b=0,则函数的图象与直线y=10只有一个公共点 |
(本小题满分12分)已知函数(为自然对数的底数),曲线在点处的切线方程为.
(1)求,的值;
(2)任意,时,证明:.
(本小题满分12分)已知函数(为自然对数的底数),曲线在点处的切线方程为.
(1)求,的值;
(2)任意,时,证明:.
试题篮
()