如图所示,半径为a的圆形区域内有匀强磁场,磁感应强度B=0.2T,磁场方向垂直纸面向里,半径为b的金属圆环与磁场同心地放置,磁场与环面垂直,其中a=0.4m,b=0.6m,金属环上分别接有灯、,两灯的电阻均为.一金属棒MN与金属环接触良好,棒与环的电阻均不计.
(1)若棒以的速率在环上向右匀速滑动,求棒滑过圆环直经的瞬间,MN中的电动势和流过的电流;
(2)撤去中间的金属棒MN,将右边的半圆环以为轴向上翻转90 ,若此后磁场随时间均匀变化,其变化率为T/s,求的功率.
如图所示,水平面上有两根相距0.5m的足够长的平行金属导轨MN和PQ,它们的电阻可忽略不计,在M和 P之间接有阻值为R的定值电阻,导体棒ab长l=0.5m,其电阻为r,与导轨接触良好.整个装置处于方向竖直向上的匀强磁场中,磁感应强度B=0.4T.现使ab以v=10m/s的速度向右做匀速运动.
(1)ab中的感应电动势多大?
(2)ab中电流的方向如何?
(3)若定值电阻R=3.0Ω,导体棒的电阻r=1.0Ω,,则电路电流大?
近期《科学》中文版的文章介绍了一种新技术--航天飞缆,航天飞缆是用柔性缆索将两个物体连接起来在太空飞行的系统。飞缆系统在太空飞行中能为自身提供电能和拖曳力,它还能清理"太空垃圾"等。从1967年至1999年17次试验中,飞缆系统试验已获得部分成功。该系统的工作原理可用物理学的基本定律来解释。
下图为飞缆系统的简化模型示意图,图中两个物体P,Q的质量分别为mP、mQ,柔性金属缆索长为l,外有绝缘层,系统在近地轨道作圆周运动,运动过程中Q距地面高为h。设缆索总保持指向地心,P的速度为vP。已知地球半径为R,地面的重力加速度为g。
(1)飞缆系统在地磁场中运动,地磁场在缆索所在处的磁感应强度大小为B,方向垂直于纸面向外。设缆索中无电流,问缆索P、Q哪端电势高?此问中可认为缆索各处的速度均近似等于vP,求P、Q两端的电势差;
(2)设缆索的电阻为R1,如果缆索两端物体P、Q通过周围的电离层放电形成电流,相应的电阻为R2,求缆索所受的安培力多大;
(3)求缆索对Q的拉力FQ。
如图所示,两根平行金属导轨固定在水平桌面上,每根导轨每米的电阻为r0=0.10Ω/m,导轨的端点P、Q用电阻可以忽略的导线相连,两导轨间的距离l=0.20m。有随时间变化的匀强磁场垂直于桌面,已知磁感应强度B与时间t的关系为B=kt,比例系数k=0.020T/s。一电阻不计的金属杆可在导轨上无摩擦低滑动,在滑动过程中保持与导轨垂直。在t=0时刻,金属杆紧靠在P、Q端,在外力作用下,杆以恒定的加速度从静止开始向导轨的另一端滑动,求在t=6.0s时金属杆所受的安培力。
如图所示,一半径为r的圆形导线框内有一匀强磁场,磁场方向垂直于导线框所在平面,导线框的左端通过导线接一对水平放置的平行金属板,两板间的距离为d,板长为l,t=0时,磁场的磁感应强度B从B0开始均匀增大,同时,在板2的左端且非常靠近板2的位置有一质量为m、带电量为-q的液滴以初速度v0水平向右射入两板间,该液滴可视为质点。
⑴要使该液滴能从两板间射出,磁感应强度随时间的变化率K应满足什么条件?
⑵要使该液滴能从两板间右端的中点射出,磁感应强度B与时间t应满足什么关系?
如图甲所示,真空中两水平放置的平行金属板C、D,上面分别开有正对的小孔O1、O2,金属板C、D接在正弦交流电流上,两板C、D间的电压UCD随时间t变化的图象如图乙所示.t=0时刻开始,从小孔O1处不断飘入质量m="3." 2×10-25kg、电荷量e="1." 6 ×10-19C的带正电的粒子(设飘入速度很小,可视为零).在D板外侧有以MN为边界的匀强磁场,MN与金属板心相距d="10" cm,匀强磁场的磁感应强度大小B="0." 1 T,方向如图甲所示,粒子的重力及粒子之间的相互作用力不计.平行金属板C、D之间的距离足够小,粒子在两板间的运动时间可以忽略不计.求:
(1)带电粒子经小孔O2进入磁场后能飞出磁场边界MN的最小速度为多大?
(2)从0到0.04 s末的时间内,哪些时刻飘入小孔O1的粒子能穿过电场并飞出磁场边界MN?
(3)磁场边界MN有粒子射出的长度范围.(保留一位有效数字)
电磁炉专用平底锅的锅底和锅壁均由耐高温绝缘材料制成.起加热作用的是安在锅底的一系列半径不同的同心导电环.导电环所用的材料单位长度的电阻R=0.125Ω/m,从中心向外第n个同心圆环的半径为rn="(2n-1)" r1(n为正整数且n≤7),已知r1="1.0" cm.当电磁炉开启后,能产生垂直于锅底方向的变化磁场,已知该磁场的磁感应强度B的变化率为,忽略同心导电圆环感应电流之间的相互影响.
(1)求出半径为rn的导电圆环中产生的感应电动势瞬时表达式;
(2))半径为r1的导电圆环中感应电流的最大值I1m是多大?(计算中可取="10" )
(3)若不计其他损失,所有导电圆环的总功率P是多大?
如图所示,宽L=1m、倾角的光滑平行导轨与电动势E=3.0V、内阻r=0.5的电池相连接,处在磁感应强度、方向竖直向上的匀强磁场中。质量m=200g、电阻R=1的导体ab从静止开始运动。不计期于电阻,且导轨足够长。试计算:
(1)若在导体ab运动t=3s后将开关S合上,这时导体受到的安培力是多大?加速度是多少?
(2)导体ab的收尾速度是多大?
(3)当达到收尾速度时,导体ab的重力功率、安培力功率、电功率以及回路中焦耳热功率和化学功率各是多少?
如图所示,在xoy平面内存在B=2T的匀强磁场,OA与OCA为置于竖直平面内的光滑金属导轨,其中OCA满足曲线方程,C为导轨的最右端,导轨OA与OCA相交处的O点和A点分别接有体积可忽略的定值电阻R1=6Ω和R2=12Ω。现有一长L=1m、质量m=0.1kg的金属棒在竖直向上的外力F作用下,以v=2m/s的速度向上匀速运动,设棒与两导轨接触良好,除电阻R1、R2外其余电阻不计,求:
(1)金属棒在导轨上运动时R2上消耗的最大功率
(2)外力F的最大值
(3)金属棒滑过导轨OCA过程中,整个回路产生的热量。
如图所示为某种电子秤的原理示意图,AB为一均匀的滑线变阻器,阻值为R,长度为L,两边分别有P1、P2两个滑动头,与P1相连的金属细杆可在被固定的竖直光滑绝缘杆MN上保持水平状态,金属细杆与托盘相连,金属细杆所受重力忽略不计。弹簧处于原长时P1刚好指向A端,若P1、P2间出现电压时,该电压经过放大,通过信号转换后在显示屏上显示出质量的大小.已知弹簧的劲度系数为k,托盘自身质量为m0,电源的电动势为E,电源的内阻忽略不计,信号放大器、信号转换器和显示器的分流作用忽略不计.求:
(1)托盘上未放物体时,在托盘的自身重力作用下,P1距A端的距离x1;
(2)在托盘上放有质量为m的物体时,P1,距A端的距离x2;
(3)在托盘上未放物体时通常先校准零点,其方法是:调节P2,从而使P1、P2间的电压为零.校准零点后,将被称物体放在托盘上,试推导出被称物体的质量m与P1、P2间电压U的函数关系式.
如图所示,在倾角为θ的光滑斜面上,存在着两个磁感应强度相等的匀强磁场,方向一个垂直斜面向上,另一个垂直斜面向下,宽度均为L.一个质量为m、边长也为L的正方形线框(设电阻为R)以速度υ进入磁场时,恰好做匀速直线运动,若当ab边到达与中间位置时,线框又恰好做匀速运动,则
(1)当ab边刚越过时,线框加速度的值为多少?
(2)求线框从开始进入磁场到ab边到达和中点的过程中产生的热量是多少?
如图所示,MN和PQ是两根放在竖直面内且足够长的平行金属导轨,相距l=50cm。导轨处在垂直纸面向里的磁感应强度B=5T的匀强磁场中。一根电阻为r=0.1Ω的金属棒ab可紧贴导轨左右运动。两块平行的、相距d=10cm、长度L=20cm的水平放置的金属板A和C分别与两平行导轨相连接,图中跨接在两导轨间的电阻R=0.4Ω。其余电阻忽略不计。已知当金属棒ab不动时,质量m=10g、带电量q=-10-3C的小球以某一速度v0沿金属板A和C的中线射入板间,恰能射出金属板(g取10m/s2)。求:
(1)小球的速度v0;
(2)若使小球在金属板间不偏转,则金属棒ab的速度大小和方向;
(3)若要使小球能从金属板间射出,则金属棒ab匀速运动的速度应满足什么条件?
如图所示,两条互相平行的光滑金属导轨位于水平面内,距离为L= 0.2m,在导轨的一端接有阻值为R=0.5Ω的电阻,在x≥0处有一与水平面垂直的均匀磁场,磁感强度B= 0.5T。一质量为m =" 0." lkg的金属直杆垂直放置在导轨上,并以v0 = 2m/s的初速度进入磁场,在安培力和一垂直于杆的水平外力F的共同作用下作匀变速直线运动,加速度大小为a=2m/s2、方向与初速度方向相反。设导轨和金属杆的电阻都可以忽略,且接触良好。求:
(1)电流为零时金属杆所处的位置
(2)电流为最大值的一半时施加在金属杆上外力F的大小和方向
(3)保持其他条件不变,而初速度v0取不同值,求开始时F的方向与初速度v0取值的关系
如图所示,将边长为a、质量为m、电阻为R的正方形导线框竖直向上抛出,穿过宽度为b、磁感应强度为B的匀强磁场,磁场的方向垂直纸面向里.线框向上离开磁场时的速度刚好是进人磁场时速度的一半,线框离开磁场后继续上升一段高度,然后落下并匀速进人磁场.整个运动过程中始终存在着大小恒定的空气阻力f且线框不发生转动.求:
(1)线框在下落阶段匀速进人磁场时的速度V2;
(2)线框在上升阶段刚离开磁场时的速度V1;
(3)线框在上升阶段通过磁场过程中产生的焦耳热Q.
图1是一台发电机定子中的磁场分布图,其中N、S是永久磁铁的两个磁极,它们的表面呈半圆柱面形状。M是圆柱形铁芯,它与磁极的柱面共轴。磁极与铁芯之间的缝隙中形成方向沿圆柱半径、大小近似均匀的磁场,磁感强度B=0.050T
图2是该发电机转子的示意图(虚线表示定子的铁芯M)。矩形线框abcd可绕过ad、cb 边的中点并与图1中的铁芯M共轴的固定转轴oo′旋转,在旋转过程中,线框的ab、cd边始终处在图1所示的缝隙内的磁场中。已知ab边长 l1=25.0cm, ad边长 l2=10.0cm 线框共有N=8匝导线,放置的角速度。将发电机的输出端接入图中的装置K后,装置K能使交流电变成直流电,而不改变其电压的大小。直流电的另一个输出端与一可变电阻R相连,可变电阻的另一端P是直流电的正极,直流电的另一个输出端Q是它的负极。
图3是可用于测量阿伏加德罗常数的装置示意图,其中A、B是两块纯铜片,插在CuSO4稀溶液中,铜片与引出导线相连,引出端分别为x、 y。
现把直流电的正、负极与两铜片的引线端相连,调节R,使CuSO4溶液中产生I=0.21A的电流。假设发电机的内阻可忽略不计,两铜片间的电阻r是恒定的。
(1)求每匝线圈中的感应电动势的大小。
(2)求可变电阻R与A、B间电阻r之和。
试题篮
()