某电商积极响应市政府号召,在线销售甲、乙、丙三种农产品,已知 乙产品的售价比 甲产品的售价多5元, 丙产品的售价是 甲产品售价的3倍,用270元购买丙产品的数量是用60元购买乙产品数量的3倍.
(1)求甲、乙、丙三种农产品每千克的售价分别是多少元?
(2)电商推出如下销售方案:甲、乙、丙三种农产品搭配销售共 ,其中乙产品的数量是丙产品数量的2倍,且甲、丙两种产品数量之和不超过乙产品数量的3倍.请你帮忙计算,按此方案购买 农产品最少要花费多少元?
在襄阳市创建全国文明城市的工作中,市政部门绿化队改进了对某块绿地的灌浇方式.改进后,现在每天用水量是原来每天用水量的 ,这样120吨水可多用3天,求现在每天用水量是多少吨?
5月18日,我市九年级学生安全有序开学复课.为切实做好疫情防控工作,开学前夕,我市某校准备在民联药店购买口罩和水银体温计发放给每个学生.已知每盒口罩有100只,每盒水银体温计有10支,每盒口罩价格比每盒水银体温计价格多150元.用1200元购买口罩盒数与用300元购买水银体温计所得盒数相同.
(1)求每盒口罩和每盒水银体温计的价格各是多少元?
(2)如果给每位学生发放2只口罩和1支水银体温计,且口罩和水银体温计均整盒购买.设购买口罩 盒 为正整数),则购买水银体温计多少盒能和口罩刚好配套?请用含 的代数式表示.
(3)在民联药店累计购医用品超过1800元后,超出1800元的部分可享受8折优惠.该校按(2)中的配套方案购买,共支付 元,求 关于 的函数关系式.若该校九年级有900名学生,需要购买口罩和水银体温计各多少盒?所需总费用为多少元?
某校足球队需购买 、 两种品牌的足球.已知 品牌足球的单价比 品牌足球的单价高20元,且用900元购买 品牌足球的数量用720元购买 品牌足球的数量相等.
(1)求 、 两种品牌足球的单价;
(2)若足球队计划购买 、 两种品牌的足球共90个,且 品牌足球的数量不小于 品牌足球数量的2倍,购买两种品牌足球的总费用不超过8500元.设购买 品牌足球 个,总费用为 元,则该队共有几种购买方案?采用哪一种购买方案可使总费用最低?最低费用是多少元?
某文体商店计划购进一批同种型号的篮球和同种型号的排球,每一个排球的进价是每一个篮球的进价的,用3600元购买排球的个数要比用3600元购买篮球的个数多10个.
(1)问每一个篮球、排球的进价各是多少元?
(2)该文体商店计划购进篮球和排球共100个,且排球个数不低于篮球个数的3倍,篮球的售价定为每一个100元,排球的售价定为每一个90元.若该批篮球、排球都能卖完,问该文体商店应购进篮球、排球各多少个才能获得最大利润?最大利润是多少?
某商场准备购进,两种书包,每个种书包比种书包的进价少20元,用700元购进种书包的个数是用450元购进种书包个数的2倍,种书包每个标价是90元,种书包每个标价是130元.请答案下列问题:
(1),两种书包每个进价各是多少元?
(2)若该商场购进种书包的个数比种书包的2倍还多5个,且种书包不少于18个,购进,两种书包的总费用不超过5450元,则该商场有哪几种进货方案?
(3)该商场按(2)中获利最大的方案购进书包,在销售前,拿出5个书包赠送给某希望小学,剩余的书包全部售出,其中两种书包共有4个样品,每种样品都打五折,商场仍获利1370元.请直接写出赠送的书包和样品中,种书包各有几个?
某商场准备购进、两种型号电脑,每台型号电脑进价比每台型号电脑多500元,用40000元购进型号电脑的数量与用30000元购进型号电脑的数量相同,请解答下列问题:
(1),型号电脑每台进价各是多少元?
(2)若每台型号电脑售价为2500元,每台型号电脑售价为1800元,商场决定同时购进,两种型号电脑20台,且全部售出,请写出所获的利润(单位:元)与型号电脑(单位:台)的函数关系式,若商场用不超过36000元购进,两种型号电脑,型号电脑至少购进10台,则有几种购买方案?
(3)在(2)问的条件下,将不超过所获得的最大利润再次购买,两种型号电脑捐赠给某个福利院,请直接写出捐赠,型号电脑总数最多是多少台.
随着人们“节能环保,绿色出行”意识的增强,越来越多的人喜欢骑自行车出行,也给自行车商家带来商机.某自行车行经营的型自行车去年销售总额为8万元.今年该型自行车每辆售价预计比去年降低200元.若该型车的销售数量与去年相同,那么今年的销售总额将比去年减少,求:
(1)型自行车去年每辆售价多少元?
(2)该车行今年计划新进一批型车和新款型车共60辆,且型车的进货数量不超过型车数量的两倍.已知型车和型车的进货价格分别为1500元和1800元,计划型车销售价格为2400元,应如何组织进货才能使这批自行车销售获利最多?
南宁至玉林高速铁路已于去年开工建设.玉林良睦隧道是全线控制性工程,首期打通共有土石方总量为600千立方米,设计划平均每天挖掘土石方千立方米,总需用时间天,且完成首期工程限定时间不超过600天.
(1)求与之间的函数关系式及自变量的取值范围;
(2)由于工程进度的需要,实际平均每天挖掘土石方比原计划多0.2千立方米,工期比原计划提前了100天完成,求实际挖掘了多少天才能完成首期工程?
某学校为丰富同学们的课余生活,购买了一批数量相等的象棋和围棋供兴趣小组使用,其中购买象棋用了420元,购买围棋用了756元,已知每副围棋比每副象棋贵8元.
(1)求每副围棋和象棋各是多少元?
(2)若该校决定再次购买同种围棋和象棋共40副,且再次购买的费用不超过600元,则该校最多可再购买多少副围棋?
天水市某商店准备购进、两种商品,种商品每件的进价比种商品每件的进价多20元,用2000元购进种商品和用1200元购进种商品的数量相同.商店将种商品每件的售价定为80元,种商品每件的售价定为45元.
(1)种商品每件的进价和种商品每件的进价各是多少元?
(2)商店计划用不超过1560元的资金购进、两种商品共40件,其中种商品的数量不低于种商品数量的一半,该商店有几种进货方案?
(3)“五一”期间,商店开展优惠促销活动,决定对每件种商品售价优惠元,种商品售价不变,在(2)的条件下,请设计出的不同取值范围内,销售这40件商品获得总利润最大的进货方案.
某社区拟建 , 两类摊位以搞活"地摊经济",每个 类摊位的占地面积比每个 类摊位的占地面积多2平方米.建 类摊位每平方米的费用为40元,建 类摊位每平方米的费用为30元.用60平方米建 类摊位的个数恰好是用同样面积建 类摊位个数的 .
(1)求每个 , 类摊位占地面积各为多少平方米?
(2)该社区拟建 , 两类摊位共90个,且 类摊位的数量不少于 类摊位数量的3倍.求建造这90个摊位的最大费用.
为了对学生进行革命传统教育,红旗中学开展了“清明节祭扫”活动.全校学生从学校同时出发,步行4000米到达烈士纪念馆.学校要求九(1)班提前到达目的地,做好活动的准备工作.行走过程中,九(1)班步行的平均速度是其他班的1.25倍,结果比其他班提前10分钟到达.分别求九(1)班、其他班步行的平均速度.
列方程解应用题:
某列车平均提速,用相同的时间,该列车提速前行驶,提速后比提速前多行驶,求该列车提速前的平均速度.
试题篮
()