如图,CD是⊙O的直径, , ,点B为弧AD 的中点,点P是直径CD 上的一个动点,则PA+PB的最小值为 .
如图,平面直角坐标系内,小正方形网格的边长为1个单位长度,△ ABC的三个顶点的坐标分别为 A(﹣1,3), B(﹣4,0), C(0,0)
(1)画出将△ ABC向上平移1个单位长度,再向右平移5个单位长度后得到的△ A 1 B 1 C 1;
(2)画出将△ ABC绕原点 O顺时针方向旋转90°得到△ A 2 B 2 O;
(3)在 x轴上存在一点 P,满足点 P到 A 1与点 A 2距离之和最小,请直接写出 P点的坐标.
如图所示,正方形ABCD的边长为4,E是边BC上的一点,且 ,P是对角线AC上的一动点,连接PB、PE,当点P在AC上运动时,△PBE周长的最小值是 .
如图,在四边形 ABCD中,∠ B=∠ C=90°, AB> CD, AD= AB+ CD.
(1)利用尺规作∠ ADC的平分线 DE,交 BC于点 E,连接 AE(保留作图痕迹,不写作法);
(2)在(1)的条件下,
①证明: AE⊥ DE;
②若 CD=2, AB=4,点 M, N分别是 AE, AB上的动点,求 BM+ MN的最小值.
如图,△ ABC中, AC= BC=3, AB=2,将它沿 AB翻折得到△ ABD,点 P、 E、 F分别为线段 AB、 AD、 DB上的动点,则 PE+ PF的最小值是( )
A. |
|
B. |
|
C. |
|
D. |
|
如图,已知 A( , y 1), B(2, y 2)为反比例函数 y= 图象上的两点,动点 P( x,0)在 x轴的正半轴上运动,当线段 AP与线段 BP之差达到最大时点 P的坐标是( )
A. |
( ,0) |
B. |
(3,0) |
C. |
(4,0) |
D. |
( ,0) |
如图,在平面直角坐标系中,反比例函数 y= ( k>0)的图象与半径为5的⊙ O交于 M、 N两点,△ MON的面积为3.5,若动点 P在 x轴上,则 PM+ PN的最小值是 .
如图,在Rt△ ABC中,∠ C=90°, AC=3, BC=4, D、 E分别是 AB、 BC边上的动点,则 AE+ DE的最小值为( )
A. |
|
B. |
|
C. |
5 |
D. |
|
如图,菱形 ABCD的边长为2 cm,∠ A=120°,点 E是 BC边上的动点,点 P是对角线 BD上的动点,若使 PC+ PE的值最小,则这个最小值为 .
如图,矩形的边OA在x轴上,边OC在y轴上,点B的坐标为(10,8),沿直线OD折叠矩形,使点A正好落在BC上的E处,E点坐标为(6,8),抛物线y=ax2+bx+c经过O、A、E三点.
(1)求此抛物线的解析式;
(2)求AD的长;
(3)点P是抛物线对称轴上的一动点,当△PAD的周长最小时,求点P的坐标.
如图,已知一次函数 的图象与反比例函数 的图象交于点A(﹣1,2)和点B,点C在y轴上.
(1)当△ABC的周长最小时,求点C的坐标;
(2)当x+b<时,请直接写出x的取值范围.
如图,正△ABC的边长为2,过点B的直线l⊥AB,且△ABC与△A′BC′关于直线l对称,D为线段BC′上一动点,则AD+CD的最小值是( )
A.4B. C. D.
试题篮
()