下列四个命题:
①等边三角形是中心对称图形;
②在同圆或等圆中,相等的弦所对的圆周角相等;
③三角形有且只有一个外接圆;
④垂直于弦的直径平分弦所对的两条弧.
其中真命题的个数有( )
A.1个 | B.2个 | C.3个 | D.4个 |
用一把带有刻度的直尺,①可以画出两条平行的直线与b,如图⑴;②可以画出∠AOB的平分线OP,如图⑵所示;③可以检验工件的凹面是否为半圆,如图⑶所示;④可以量出一个圆的半径,如图⑷所示.这四种说法正确的个数有 ( )
A.1个 | B.2个 | C.3个 | D.4个 |
如图,是由形状相同的正六边形和正三角形镶嵌而成的一组有规律的图案,则第n个图案中阴影小三角形的个数是 .
如图,在平面直角坐标系中,有若干个横坐标分别为整数的点,其顺序按图中“→”方向排列,如(1,0),(2,0),(2,1),(1,1),(1,2),(2,2)…根据这个规律,第2012个点的横坐标为 .
一个由小菱形组成的装饰链,断去了一部分,剩下部分如图所示,则断去部分的小菱形的个数可能是【 】
A.3 | B.4 | C.5 | D.6 |
如图,在平面直角坐标系中,,,,,……,以为对角线作第一个正方形,以为对角线作第二个正方形,以为对角线作第三个正方形,……,顶点,,,……都在第一象限,按照这样的规律依次进行下去,点的坐标为_________________.
正方形网格中,每个小正方形的边长为1.图1所示的矩形是由4个全等的直角
梯形拼接而成的(图形的各顶点都在格点上;拼接时图形互不重叠,不留空隙),如果用这
4个直角梯形拼接成一个等腰梯形,那么(1)仿照图1,在图2中画出一个拼接成的等腰梯
形;(2)这个拼接成的等腰梯形的周长为________.
同一时刻,身高1.6米的小强在阳光下的影长为0.8米,一棵大树的影长为4.8米,则这棵树的高度为
A.2.4米 | B.9.6米 | C.2米 | D.1.6米 |
某研究性学习小组在探究矩形的折纸问题时,将一块直角三角板的直角顶点绕矩形ABCD(AB<BC)的对角线的交点O旋转(①→②→③),图中的M、N分别为直角三角形的直角边与矩形ABCD的边CD、BC的交点。
该学习小组成员意外的发现图①(三角板一直角边与OD重合)中,BN2=CD2+CN2,在图③中(三角板一边与OC重合),CN2=BN2+CD2,请你对这名成员在图①和图③中发现的结论选择其一说明理由。
试探究图②中BN、CN、CM、DN这四条线段之间的数量关系,写出你的结论,并说明理由。
将矩形ABCD改为边长为1的正方形ABCD,直角三角板的直角顶点绕O点旋转到图④,两直角边与AB、BC分别交于M、N,直接写出BN、CN、CM、DM这四条线段之 间所满足的数量关系(不需要证明)
一个几何体的三视图如图所示,网格中小正方形的边长均为1,那么下列选项中最接近这个几何体的侧面积的是( )
A.24.0 | B.62.8 | C.74.2 | D.113.0 |
问题背景 某课外学习小组在一次学习研讨中,得到如下两个命题:
① 如图1,O是正三角形ABC的中心,∠MON分别与AB、BC交于点P,Q,若∠MON = 120°,则四边形OPBQ的面积等于三角形ABC面积的三分之一.
② 如图2,O是正方形ABCD的中心,∠MON分别与AB、BC交于点P,Q,若∠MON = 90°,则四边形OPBQ的面积等于正方形ABCD面积的四分之一.然后运用类比的思想提出了如下的命题:
③ 如图3,O是正五边形ABCDE的中心,∠MON分别与AB、BC交于点P,Q,若∠MON = 72°,则四边形OPBQ的面积等于五边形ABCDE面积的五分之一.
、任务要求
(1)请你从①、②、③三个命题中选择一个进行证明;(说明:选①做对的得5分,选②做对的得4分,选③做对的得6分)
(2)请你继续完成下面的探索:
如图④,在正n(n≥3)边形ABCDEF…中,O是中心,∠MON分别与AB、BC交于点P,Q,若∠MON等于多少度时,则四边形OPBQ的面积等于正n边形ABCDE…面积的n分之一?(不要求证明)
解:(1)我选 .
证明:
试题篮
()