优题课 - 聚名师,上好课(www.youtike.com)
  首页 / 试题库 / 高中数学试题
高中数学

已知圆 x 2 + y 2 - 6 x = 0 ,过点(1,2)的直线被该圆所截得的弦的长度的最小值为(    

A.

1

B.

2

C.

3

D.

4

来源:2020年全国统一高考文科数学试卷(新课标Ⅰ)
  • 题型:未知
  • 难度:未知

某校一个课外学习小组为研究某作物种子的发芽率 y和温度 x(单位:°C)的关系,在20个不同的温度条件下进行种子发芽实验,由实验数据 ( x i , y i ) ( i = 1 , 2 , , 20 ) 得到下面的散点图:

由此散点图,在10°C至40°C之间,下面四个回归方程类型中最适宜作为发芽率 y和温度 x的回归方程类型的是(    

A.

y = a + bx

B.

y = a + b x 2

C.

y = a + b e x

D.

y = a + b ln x

来源:2020年全国统一高考文科数学试卷(新课标Ⅰ)
  • 题型:未知
  • 难度:未知

O为正方形 ABCD的中心,在 OABCD中任取3点,则取到的3点共线的概率为(    

A.

1 5

B.

2 5

C.

1 2

D.

4 5

来源:2020年全国统一高考文科数学试卷(新课标Ⅰ)
  • 题型:未知
  • 难度:未知

埃及胡夫金字塔是古代世界建筑奇迹之一,它的形状可视为一个正四棱锥,以该四棱锥的高为边长的正方形面积等于该四棱锥一个侧面三角形的面积,则其侧面三角形底边上的高与底面正方形的边长的比值为(    

A.

5 - 1 4

B.

5 - 1 2

C.

5 + 1 4

D.

5 + 1 2

来源:2020年全国统一高考文科数学试卷(新课标Ⅰ)
  • 题型:未知
  • 难度:未知

z = 1 + 2 i + i 3 ,则 | z | =    

A.

0

B.

1

C.

2

D.

2

来源:2020年全国统一高考文科数学试卷(新课标Ⅰ)
  • 题型:未知
  • 难度:未知

已知集合 A = { x | x 2 - 3 x - 4 < 0 } , B = { - 4 , 1 , 3 , 5 } A B =    

A.

{ - 4 , 1 }

B.

{ 1 , 5 }

C.

{ 3 , 5 }

D.

{ 1 , 3 }

来源:2020年全国统一高考文科数学试卷(新课标Ⅰ)
  • 题型:未知
  • 难度:未知

某沙漠地区经过治理,生态系统得到很大改善,野生动物数量有所增加.为调查该地区某种野生动物的数量,将其分成面积相近的200个地块,从这些地块中用简单随机抽样的方法抽取20个作为样区,调查得到样本数据(xiyi)(i=1,2,…,20),其中xiyi分别表示第i个样区的植物覆盖面积(单位:公顷)和这种野生动物的数量,并计算得 i = 1 20 x i = 60 i = 1 20 y i = 1200 i = 1 20 x i - x ̄ ) 2 = 80 i = 1 20 y i - y ̄ ) 2 = 9000 i = 1 20 x i - x ̄ ) y i - y ̄ ) = 800 .

(1)求该地区这种野生动物数量的估计值(这种野生动物数量的估计值等于样区这种野生动物数量的平均数乘以地块数);

(2)求样本(xiyi)(i=1,2,…,20)的相关系数(精确到0.01);

(3)根据现有统计资料,各地块间植物覆盖面积差异很大.为提高样本的代表性以获得该地区这种野生动物数量更准确的估计,请给出一种你认为更合理的抽样方法,并说明理由.

附:相关系数r= i = 1 n x i - x ̄ ) y i - y ̄ ) i = 1 n x i - x ̄ ) 2 i = 1 n y i - y ̄ ) 2 ≈1.414.

来源:2020年全国统一高考文科数学试卷(新课标Ⅱ)
  • 题型:未知
  • 难度:未知

ABC的内角ABC的对边分别为abc,已知 cos 2 ( π 2 + A ) + cos A = 5 4

(1)求A

(2)若 b - c = 3 3 a ,证明:△ABC是直角三角形.

来源:2020年全国统一高考文科数学试卷(新课标Ⅱ)
  • 题型:未知
  • 难度:未知

S n 为等差数列 a n 的前n项和.若 a 1 = - 2 , a 2 + a 6 = 2 ,则 S 10 = __________.

来源:2020年全国统一高考文科数学试卷(新课标Ⅱ)
  • 题型:未知
  • 难度:未知

sin x = - 2 3 ,则 cos 2 x = __________.

来源:2020年全国统一高考文科数学试卷(新课标Ⅱ)
  • 题型:未知
  • 难度:未知

设函数 f ( x ) = x 3 - 1 x 3 ,则 f ( x )    

A.

是奇函数,且在(0,+∞)单调递增

B.

是奇函数,且在(0,+∞)单调递减

C.

是偶函数,且在(0,+∞)单调递增

D.

是偶函数,且在(0,+∞)单调递减

来源:2020年全国统一高考文科数学试卷(新课标Ⅱ)
  • 题型:未知
  • 难度:未知

执行右面的程序框图,若输入的 k=0, a=0,则输出的 k为(    

A.

2

B.

3

C.

4

D.

5

来源:2020年全国统一高考文科数学试卷(新课标Ⅱ)
  • 题型:未知
  • 难度:未知

S n为等比数列{ a n}的前 n项和.若 a 5- a 3=12, a 6- a 4=24,则 S n a n =(    

A.

2 n-1

B.

2-2 1- n

C.

2-2 n -1

D.

2 1- n-1

来源:2020年全国统一高考文科数学试卷(新课标Ⅱ)
  • 题型:未知
  • 难度:未知

已知单位向量 a b 的夹角为60°,则在下列向量中,与 b 垂直的是(    

A.

a + 2 b

B.

2 a + b

C.

a - 2 b

D.

2 a - b

来源:2020年全国统一高考文科数学试卷(新课标Ⅱ)
  • 题型:未知
  • 难度:未知

在新冠肺炎疫情防控期间,某超市开通网上销售业务,每天能完成1200份订单的配货,由于订单量大幅增加,导致订单积压.为解决困难,许多志愿者踊跃报名参加配货工作.已知该超市某日积压500份订单未配货,预计第二天的新订单超过1600份的概率为0.05,志愿者每人每天能完成50份订单的配货,为使第二天完成积压订单及当日订单的配货的概率不小于0.95,则至少需要志愿者(    

A.

10名

B.

18名

C.

24名

D.

32名

来源:2020年全国统一高考文科数学试卷(新课标Ⅱ)
  • 题型:未知
  • 难度:未知

高中数学试题