已知椭圆的离心率为,以原点为圆心,椭圆的短半轴长为半径的圆与直线相切。
(1)求椭圆的标准方程;
(2)若直线与椭圆相交于、两点,且,试判断的面积是否为定值?若为定值,求出定值;若不为定值,说明理由.
我们把一系列向量排成一列,称为向量列,记作,又设,假设向量列满足:,。
(1)证明数列是等比数列;
(2)设表示向量间的夹角,若,记的前项和为,求;
(3)设是上不恒为零的函数,且对任意的,都有,若,,求数列的前项和.
在长方体ABCD—A1B1C1D1中,,点E是棱AB上一点.且.
(1)证明:;
(2)若二面角D1—EC—D的大小为,求的值.
设数列{an}的首项不为零,前n项和为Sn,且对任意的r,tN*,都有.
(1)求数列{an}的通项公式(用a1表示);
(2)设a1=1,b1=3,,求证:数列为等比数列;
(3)在(2)的条件下,求.
在平面直角坐标系xOy中,设曲线C1:所围成的封闭图形的面积为,曲线C1上的点到原点O的最短距离为.以曲线C1与坐标轴的交点为顶点的椭圆记为C2.
(1)求椭圆C2的标准方程;
(2)设AB是过椭圆C2中心O的任意弦,l是线段AB的垂直平分线.M是l上的点(与O不重合).
①若MO=2OA,当点A在椭圆C2上运动时,求点M的轨迹方程;
②若M是l与椭圆C2的交点,求△AMB的面积的最小值.
已知函数,其中m,a均为实数.
(1)求的极值;
(2)设,若对任意的,恒成立,求的最小值;
(3)设,若对任意给定的,在区间上总存在,使得成立,求的取值范围.
如图,在平面直角坐标系中,已知,,是椭圆上不同的三点,,,在第三象限,线段的中点在直线上.
(1)求椭圆的标准方程;
(2)求点C的坐标;
(3)设动点在椭圆上(异于点,,)且直线PB,PC分别交直线OA于,两点,证明为定值并求出该定值.
已知函数,其中m,a均为实数.
(1)求的极值;
(2)设,若对任意的,恒成立,求的最小值;
(3)设,若对任意给定的,在区间上总存在,使得成立,求的取值范围.
如图,在平面直角坐标系中,已知,,是椭圆上不同的三点,,,在第三象限,线段的中点在直线上.
(1)求椭圆的标准方程;
(2)求点C的坐标;
(3)设动点在椭圆上(异于点,,)且直线PB,PC分别交直线OA于,两点,证明为定值并求出该定值.
已知函数(e为自然对数的底数).
(1)设曲线处的切线为,若与点(1,0)的距离为,求a的值;
(2)若对于任意实数恒成立,试确定的取值范围;
(3)当上是否存在极值?若存在,请求出极值;若不存在,请说明理由.
如图,椭圆的右焦点与抛物线的焦点重合,过且于x轴垂直的直线与椭圆交于S,T,与抛物线交于C,D两点,且
(1)求椭圆的标准方程;
(2)设P为椭圆上一点,若过点M(2,0)的直线与椭圆相交于不同两点A和B,且满足(O为坐标原点),求实数t的取值范围.
已知函数..
(1)设曲线处的切线为,点(1,0)到直线l的距离为,求a的值;
(2)若对于任意实数恒成立,试确定的取值范围;
(3)当是否存在实数处的切线与y轴垂直?若存在,求出的值;若不存在,请说明理由.
设函数
(1)若,求函数在上的最小值;
(2)若函数在存在单调递增区间,试求实数的取值范围;
(3)求函数的极值点.
已知椭圆的右焦点为F,A为短轴的一个端点,且,的面积为1(其中为坐标原点).
(1)求椭圆的方程;
(2)若C、D分别是椭圆长轴的左、右端点,动点M满足,连结CM,交椭圆于点,证明:为定值;
(3)在(2)的条件下,试问轴上是否存在异于点C的定点Q,使得以MP为直径的圆恒过直线DP、MQ的交点,若存在,求出点Q的坐标;若不存在,说明理由.
试题篮
()