优题课 - 聚名师,上好课(www.youtike.com)
  首页 / 试题库 / 高中数学试题 / 变量间的相关关系 / 解答题
高中数学

下表提供了某厂节能降耗技术改造后生产甲产品过程中记录的产量x(吨)与相应的生产能耗y(吨标准煤)的几组对照数据.

x
3
4
5
6
y
2.5
3
4
4.5

(1)请画出上表数据的散点图.
(2)请根据上表提供的数据,用最小二乘法求出y关于x的线性回归方程=bx+a.
(3)已知该厂技改前100吨甲产品的生产能耗为90吨标准煤.试根据(2)求出的回归方程,预测生产100吨甲产品的生产能耗比技改前降低多少吨标准煤?
(参考数值:3×2.5+4×3+5×4+6×4.5=66.5)

  • 题型:未知
  • 难度:未知

某班主任对全班50名学生进行了作业量多少的调查,喜欢玩电脑游戏的同学认为作业多的有18人,认为作业不多的有9人,不喜欢玩电脑游戏的同学认为作业多的有8人,认为作业不多的有15人.
(1)根据以上数据建立一个2×2的列联表.
(2)有多大的把握认为“喜欢玩电脑游戏与认为作业多有关系”?
(参考数值:≈5.059)

  • 题型:未知
  • 难度:未知

某地粮食需求量逐年上升,下表是部分统计数据:

年份(年)
2002
2004
2006
2008
2010
需求量
(万吨)
236
246
257
276
286

(1)利用所给数据求年需求量与年份之间的回归直线方程=x+.
(2)利用(1)中所求出的直线方程预测该地2014年的粮食需求量.

  • 题型:未知
  • 难度:未知

一家商场为了确定营销策略,进行了投入促销费用x和商场实际销售额y的试验,得到如下四组数据.

投入促销费用x(万元)
2
3
5
6
商场实际营销额y(万元)
100
200
300
400

(1)在下面的直角坐标系中,画出上述数据的散点图,并据此判断两个变量是否具有较好的线性相关性;

(2)求出x,y之间的回归直线方程x+
(3)若该商场计划营销额不低于600万元,则至少要投入多少万元的促销费用?

  • 题型:未知
  • 难度:未知

2013年4月14日,CCTV财经频道报道了某地建筑市场存在违规使用未经淡化海砂的现象.为了研究使用淡化海砂与混凝土耐久性是否达标有关,某大学实验室随机抽取了60个样本,得到了相关数据如下表:

 
混凝土耐久性达标
混凝土耐久性不达标
总计
使用淡化海砂
25

30
使用未经淡化海砂

15
30
总计
40
20
60

(Ⅰ)根据表中数据,求出的值,利用独立性检验的方法判断,能否在犯错误的概率不超过1%的前提下,认为使用淡化海砂与混凝土耐久性是否达标有关?
(Ⅱ)若用分层抽样的方法在使用淡化海砂的样本中抽取了6个,现从这6个样本中任取2个,则取出的2个样本混凝土耐久性都达标的概率是多少?
参考数据:


0.10
0.050
0.025
0.010
0.001

2.706
3.841
5.024
6.635
10.828

参考公式:

  • 题型:未知
  • 难度:未知

某年青教师近五年内所带班级的数学平均成绩统计数据如下:

年份
2009
2010
2011
2012
2013
平均成绩
97
98
103
108
109

(1)利用所给数据,求出平均分与年份之间的回归直线方程,并判断它们之间是正相关还是负相关。
(2)利用(1)中所求出的直线方程预测该教师2014年所带班级的数学平均成绩.
  

  • 题型:未知
  • 难度:未知

改革开放以来,我国高等教育事业有了突飞猛进的发展,有人记录了某村2001到2005年五年间每年考入大学的人数,为了方便计算,2001年编号为1,2002年编号为2,……,2005年编号为5,数据如下:

年份(x)
1
2
3
4
5
人数(y)
3
5
8
11
13

(1)从这5年中随机抽取两年,求考入大学的人数至少有年多于10人的概率.
(2)根据这年的数据,利用最小二乘法求出关于的回归方程,并计算第年的估计值。
参考:用最小二乘法求线性回归方程系数公式

  • 题型:未知
  • 难度:未知

改革开放以来,我国高等教育事业有了突飞猛进的发展,有人记录了某村2001到2005年五年间每年考入大学的人数,为了方便计算,2001年编号为1,2002年编号为2,……,2005年编号为5,数据如下:

年份(x)
1
2
3
4
5
人数(y)
3
5
8
11
13

(1)从这5年中随机抽取两年,求考入大学的人数至少有年多于10人的概率.
(2)根据这年的数据,利用最小二乘法求出关于的回归方程,并计算第年的估计值。
参考:用最小二乘法求线性回归方程系数公式

  • 题型:未知
  • 难度:未知

某种产品的广告费支出与销售额(单位:万元)之间有如下对应数据:


2
4
5
6
8

30
40
60
50
70

(1)求回归直线方程;
(2)试预测广告费支出为10万元时,销售额多大?
(3)在已有的五组数据中任意抽取两组,求至少有一组数据其预测值与实际值之差的绝对值不超过5的概率.
(参考数据:    
参考公式:线性回归方程系数:

  • 题型:未知
  • 难度:未知

一次考试中,五名学生的数学、物理成绩如下表所示:

(1)要从 5 名学生中选2 人参加一项活动,求选中的学生中至少有一人的物理成绩高于90分的概率;
(2)请在所给的直角坐标系中画出它们的散点图,并求这些数据的线性回归方程 .

(附:回归直线的方程是 : , 其中)

  • 题型:未知
  • 难度:未知

为了调查胃病是否与生活规律有关,调查某地540名40岁以上的人得结果如下:

 
患胃病
未患胃病
合计
生活不规律
60
260
320
生活有规律
20
200
220
合计
80
460
540

根据以上数据回答40岁以上的人患胃病与生活规律有关吗?

  • 题型:未知
  • 难度:未知

下表提供了某厂节能降耗技术改造后生产甲产品过程中记录的产量x(吨)与相应的生产能耗y(吨标准煤)的几组对照数据。

x
3
4
5
6
y
2.5
3
4
4.5

(1)请根据上表提供的数据, y关于x的线性回归方程
(2)已知该厂技改前100吨甲产品生产能耗为90吨标准煤.试根据(1)求出的线性回归方程,预测生产100吨甲产品的生产能耗比技改前降低多少吨标准煤?(参考公式:

  • 题型:未知
  • 难度:未知

(本小题12分)下表提供了工厂技术改造后某种型号设备的使用年限和所支出的维修费用(万元)的几组对照数据:

(年)
   
    
   
   
(万元)
   
   
   
   

 
(1)若知道呈线性相关关系,请根据上表提供的数据,用最小二乘法求出关于的线性回归方程
(2)已知工厂技改前该型号设备使用10年的维修费用为9万元.试根据(1)求出的线性回归方程,预测该型号设备技改后使用10年的维修费用比技改前降低多少?

  • 题型:未知
  • 难度:未知

某车间为了规定工时定额,需要确定加个某零件所花费的时间,为此作了四次实验,得到的数据如下:

零件的个数x(个)
2
3
4
5
加工的时间y(小时)
2.5
3
4
4.5

(1)  求出y关于x的线性回归方程;
(2)  试预测加工10个零件需要多少时间?

  • 题型:未知
  • 难度:未知

(本小题满分13分)某同学大学毕业后在一家公司上班,工作年限和年收入(万元),有以下的统计数据:


3
4
5
6

2.5
3
4
4.5

(Ⅰ)请画出上表数据的散点图;
(Ⅱ)请根据上表提供的数据,用最小二乘法求出关于的线性回归方程
(Ⅲ)请你估计该同学第8年的年收入约是多少?
(参考公式:

  • 题型:未知
  • 难度:未知

高中数学变量间的相关关系解答题