为考察某种甲型H1N1疫苗的效果,进行动物实验,得到如下疫苗效果的实验列联表:
|
感染 |
未感染 |
总计 |
没服用 |
20 |
30 |
50 |
服用 |
x |
y |
50 |
总计 |
M |
N |
100 |
设从没服用疫苗的动物中任取两只,感染数为从服从过疫苗的动物中任取两只,感染数为工作人员曾计算过
(1)求出列联表中数据的值;
(2)写出的均值(不要求计算过程),并比较大小,请解释所得出的结论的实际意义;
(3)能够以97.5%的把握认为这种甲型H1N1疫苗有效么?并说明理由。
参考公式:
参考数据:
0.05 |
0.025 |
0.010 |
|
3.841 |
5.024 |
6.635 |
(本题满分12分)班主任为了对本班学生的考试成绩进行分析,决定从全班位女同学, 位男同学中随机抽取一个容量为的样本进行分析。
(Ⅰ)如果按性别比例分层抽样,可以得到多少个不同的样本(只要求写出算式即可,不必计算出结果);
(Ⅱ)随机抽取位同学,数学成绩由低到高依次为:;
物理成绩由低到高依次为:,若规定分(含分)以上为优秀,记为这位同学中数学和物理分数均为优秀的人数,求的分布列和数学期望;
(Ⅲ)若这位同学的数学、物理分数事实上对应下表:
学生编号 |
||||||||
数学分数 |
||||||||
物理分数 |
根据上表数据可知,变量与之间具有较强的线性相关关系,求出与的线性回归方程(系数精确到).(参考公式:,其中,; 参考数据:,,,,,,)
(本小题满分12分)
某公司近年来科研费用支出万元与公司所获得利润万元之间有如下的统计数据:
2 |
3 |
4 |
5 |
|
18 |
27 |
32 |
35 |
(1)请画出上表数据的散点图;
(2)请根据上表提供的数据,用最小二乘法求出关于的线性回归方程;
(3)试根据(2)求出的线性回归方程,预测该公司科研费用支出为10万元时公司所获得的利润.
参考公式:
为了分析某个高三学生的学习状态,对其下一阶段的学习作出预测和提供指导性建议,现对他前7次考试的数学成绩x、物理成绩y进行分析.下面是该生7次考试的成绩.
数学 |
88 |
83 |
117 |
92 |
108 |
100 |
112 |
物理 |
94 |
91 |
108 |
96 |
104 |
101 |
106 |
(1)分别求出这个考生的他的数学平均成绩与物理平均成绩,并判断在这个学科中哪科成绩更稳定;
(2)已知该生的物理成绩y与数学成绩x是线性相关的,求出线性回归方程;
(3)若该生的物理成绩达到115分,请你估计他的数学成绩大约是多少?
参考公式:,
(本小题满分12分)在调查的名上网的学生中有名学生睡眠不好,名不上网的学生中有名学生睡眠不好,利用独立性检验的方法来判断是否能以的把握认为“上网和睡眠是否有关系”.
附:;
参考数据
,.
(本小题满分12分)
某赛季,甲、乙两名篮球运动员都参加了7场比赛,他们所有比赛得分的情况用如图所示的茎叶图表示.
(Ⅰ)求甲、乙两名运动员得分的中位数;
(Ⅱ)你认为哪位运动员的成绩更稳定?
(Ⅲ)如果从甲、乙两位运动员的7场得分中各随机抽取一场的得分,求甲的得分大于乙的得分的概率.
为调查某地区老年人是否需要志愿者提供帮助,用简单随机抽样方法从该地区调查了500位老年人,结果如下:
(Ⅰ)估计该地区老年人中,需要志愿者提供帮助的老年人的比例;
(Ⅱ)能否有99%的把握认为该地区的老年人是否需要志愿者提供帮助与性别有关?
(Ⅲ)根据(Ⅱ)的结论,能否提出更好的调查方法来估计该地区的老年人中,需要志愿者提供帮助的老年人的比例?说明理由.
为了比较注射
两种药物后产生的皮肤疱疹的面积,选200只家兔做实验,将这200只家兔随即地分成两组。每组100只,其中一组注射药物
,另一组注射药物
.下表1和表2分别是注射药物A和药物B后的实验结果。(疱疹面积单位:
)
表1:注射药物
后皮肤疱疹面积的频数分布表
表2:注射药物 后皮肤疱疹面积的频数分布表
(Ⅰ)完成下面频率分布直方图,并比较注射两种药物后疱疹面积的中位数大小;
(Ⅱ)完成下面
列联表,并回答能否有99.9%的把握认为"注射药物
后的疱疹面积与注射药物
后的疱疹面积有差异".
表3:
为调查某地区老年人是否需要志愿者提供帮助,用简单随机抽样方法从该地区调查了500位老人,结果如下:
(Ⅰ)估计该地区老年人中,需要志愿提供帮助的老年人的比例;
(Ⅱ)能否有99℅的把握认为该地区的老年人是否需要志愿者提供帮助与性别有关?
(Ⅲ)根据(Ⅱ)的结论,能否提出更好的调查办法来估计该地区的老年人中,需要志愿者提供帮助的老年人的比例?说明理由。
附:
为调查某地区老人是否需要志愿者提供帮助,用简单随机抽样方法从该地区调查了500位老年人,结果如下:
(1)估计该地区老年人中,需要志愿者提供帮助的老年人的比例;
(2)能否有
的把握认为该地区的老年人是否需要志愿者提供帮助与性别有关?
(3)根据(2)的结论,能否提供更好的调查方法来估计该地区老年人,需要志愿帮助的老年人的比例?说明理由.
附:
(本小题满分14分)
下表提供了某厂节能降耗技术改造后生产甲产品过程中记录的产量x(吨)与相应的生产能耗y(吨标准煤)的几组对照数据
3 |
4 |
5 |
6 |
|
2.5 |
3 |
4 |
4.5 |
(1)请画出上表数据的散点图;
(2)请根据上表提供的数据,用最小二乘法求出关于的线性回归方程;
(3)已知该厂技术改造前100吨甲产品能耗为90吨标准煤,试根据(2)求出的线性回归方程,预测生产100吨甲产品的生产能耗比技术改造前降低多少吨标准煤?
17.(本小题满分13分)
汽车是碳排放量比较大的行业之一.欧盟规定,从2012年开始,将对排放量超过的型新车进行惩罚.某检测单位对甲、乙两类型品牌车各抽取辆进行排放量检测,记录如下(单位:).
甲 |
80 |
110 |
120 |
140 |
150 |
乙 |
100 |
120 |
160 |
经测算发现,乙品牌车排放量的平均值为.
(Ⅰ)从被检测的5辆甲类品牌车中任取2辆,则至少有一辆不符合排放量的概率是多少?
(Ⅱ)若,试比较甲、乙两类品牌车排放量的稳定性.
测得某国家10对父子身高(单位:英寸)如下:
父亲身高(x) |
60 |
62 |
64 |
65 |
66 |
67 |
68 |
70 |
72 |
74 |
儿子身高(y) |
63.6 |
65.2 |
66 |
65.5 |
66.9 |
67.1 |
67.4 |
68.3 |
70.1 |
70 |
(1)对变量y与x进行相关性检验;
(2)如果y与x之间具有线性相关关系,求回归直线方程;
(3)如果父亲的身高为73英寸,估计儿子的身高.
某地10户家庭的年收入和年饮食支出的统计资料如下表:
年收入 x(万元) |
2 |
4 |
4 |
6 |
6 |
6 |
7 |
7 |
8 |
10 |
年饮食支出 y(万元) |
0.9 |
1.4 |
1.6 |
2.0 |
2.1 |
1.9 |
1.8 |
2.1 |
2.2 |
2.3 |
(1)根据表中数据,确定家庭的年收入和年饮食支出之间是否具有相关关系;若具有相关关系求出y与x的回归直线方程;
(2)如果某家庭年收入为9万元,预测其年饮食支出.
试题篮
()