(本小题满分12分)已知在四棱锥中,底面是矩形,且,,平面,、
分别是线段、的中点.
(1)证明:;
(2)判断并说明上是否存在点,使得平面?若存在,求出的值;若不存在,请说明理由.
(本小题满分14分)如图,在三棱锥P- ABC中,已知平面PBC 平面ABC.
(1)若ABBC,CPPB,求证:CPPA:
(2)若过点A作直线⊥平面ABC,求证://平面PBC.
(本小题满分14分)三棱柱的直观图及三视图(正视图和俯视图是正方形,侧视图是等腰直角三角形)如图所示,为的中点.
(1)求证:平面;
(2)求二面角的正切值.
如图,在四棱锥中,底面是菱形,且.
(1)求证:;
(2)若平面与平面的交线为,求证:.
(本小题满分12分)在棱锥中,平面平面,是的中点,
.
(1)求证:;
(2)求三棱锥的高。
如图,三角形和梯形所在的平面互相垂直, ,,是线段上一点,.
(Ⅰ)当时,求证:平面;
(Ⅱ)求二面角的正弦值;
(Ⅲ)是否存在点满足平面?并说明理由.
如图所示,四棱锥P—ABCD中,ABAD,CDAD,PA底面ABCD,PA=AD=CD=2AB=2,M为PC的中点。
(1)求证:BM∥平面PAD;
(2)在侧面PAD内找一点N,使MN平面PBD;
(3)求直线PC与平面PBD所成角的正弦。
如图,在四棱锥P-ABCD中,PA⊥面ABCD,AB=BC=2, AD=CD=,PA=,∠ABC=120°,G为线段PC上的点
(1)证明:BD⊥面PAC
(2)若G是PC的中点,求DG与APC所成的角的正切值
(3)若G满足PC⊥面BGD,求的值.
(本小题满分12分)已知四棱锥中,底面ABCD为直角梯形,BC//AD,,且PA=AB=BC=1,AD=2,平面ABCD,E为AB的中点.
(Ⅰ)证明:;
(Ⅱ)在线段PA上是否存在一点F,使EF//平面PCD,若存在,求的值.
(本小题满分12分)如图1,在Rt中,,.,将沿折起到的位置,使,如图2.
(Ⅰ)求证: 平面;
(Ⅱ)若,求平面与平面所成二面角的大小.
试题篮
()