(本小题满分12分)如图,已知四棱锥的底面是菱形,对角线交于点,,,,底面,点满足.
(1)当时,证明:.
(2)若二面角的大小为,问:符合条件的点是否存在.若存在,求出的值.若不存在,说明理由.
(本小题满分14分)如图所示,四棱锥P-ABCD中,底面ABCD是矩形,PA⊥平面ABCD,M、N分别是AB、PC的中点,PA=AD=a.
(1)求证:MN∥平面PAD;
(2)求证:平面PMC⊥平面PCD.
(本小题满分10分)如图甲,⊙的直径,圆上两点在直径的两侧,使, .沿直径折起,使两个半圆所在的平面互相垂直(如图乙),为的中点.根据图乙解答下列各题:
(1)求点到平面的距离;
(2)如图:若的平分线交弧于一点,试判断是否与平面平行?并说明理由.
(本小题满分16分)在四棱锥中,平面,是正三角形,与的交点恰好是中点,又,,点在线段上,且.
(1)求证:;
(2)求证:∥平面;
(3)求二面角的余弦值.
如下图所示:在直三棱柱ABC—A1B1C1中,AC=3,BC=4,AB=5,AA1=4,点D是AB的中点.
(Ⅰ)求证:AC⊥BC1;
(Ⅱ)求证:AC1∥平面CDB1;
(本小题满分12分)如图,直三棱柱ABC-A1B1C1,∠ACB=90°,E是棱C1的中点,且CF⊥AB,AC=BC.
(1)求证:CF∥平面AEB1;
(2)求证:平面AEB1⊥平面ABB1A1.
如图,在正方体ABCD-A1B1C1D1中.
(1)若E为棱DD1上的点,试确定点E的位置,使平面A1C1E∥B1D;
(2)若M为A1B上的一动点,求证:DM∥平面D1B1C.
(本小题满分14分)如图,在四棱锥P - ABCD中,四边形ABCD是矩形,平面PCD⊥平面ABCD,M为PC中点.求证:
(1)PA∥平面MDB;
(2)PD⊥BC.
试题篮
()