优题课 - 聚名师,上好课(www.youtike.com)
  首页 / 试题库 / 高中数学试题 / 平面解析几何的产生──数与形的结合 / 解答题
高中数学

已知椭圆和抛物线有公共焦点F(1,0), 的中心和的顶点都在坐标原点,过点M(4,0)的直线与抛物线分别相交于A,B两点.
(Ⅰ)写出抛物线的标准方程;
(Ⅱ)若,求直线的方程;
(Ⅲ)若坐标原点关于直线的对称点在抛物线上,直线与椭圆有公共点,求椭圆的长轴长的最小值.

  • 题型:未知
  • 难度:未知

如图,,过曲线上一点的切线,与曲线也相切于点,记点的横坐标为

(1)用表示切线的方程;
(2)用表示的值和点的坐标;
(3)当实数取何值时,
并求此时所在直线的方程。

  • 题型:未知
  • 难度:未知

(本小题满分10分)选修4-4:坐标系与参数方程
在平面直角坐标系xOy中,已知曲线,将上的所有点的横坐标、纵坐标分别伸长为原来的、2倍后得到曲线. 以平面直角坐标系xOy的原点O为极点,x轴的正半轴为极轴,取相同的单位长度建立极坐标系,已知直线.
(Ⅰ)试写出直线的直角坐标方程和曲线的参数方程;
(Ⅱ)在曲线上求一点P,使点P到直线的距离最大,并求出此最大值.

  • 题型:未知
  • 难度:未知

(本小题满分10分)选修4-1:几何证明选讲
如图所示,AB是⊙O的直径,
G为AB延长线上的一点,GCD是⊙O的割线,过点
G作AB的垂线,交AC的延长线于点E,交AD的延
长线于点F,过G作⊙O的切线,切点为H .
求证:(Ⅰ)C,D,F,E四点共圆;
(Ⅱ)GH2=GE·GF.

  • 题型:未知
  • 难度:未知

(本小题满分12分)一动圆与已知相外切,与相内切.
(Ⅰ)求动圆圆心的轨迹C;
(Ⅱ)若A(0,1),轨迹C与直线y="kx+m" (k≠0)相交于不同的两点M、N,当||=||时,求m的取值范围.

  • 题型:未知
  • 难度:未知

(本小题满分10分)选修4-1:几何证明选讲
如图所示,AB是⊙O的直径,
G为AB延长线上的一点,GCD是⊙O的割线,过点<
G作AB的垂线,交AC的延长线于点E,交AD的延
长线于点F,过G作⊙O的切线,切点为H .
求证:(Ⅰ)C,D,F,E四点共圆;
(Ⅱ)GH2=GE·GF.

  • 题型:未知
  • 难度:未知

C.(选修4—4:坐标系与参数方程)
若两条曲线的极坐标方程分别为,它们相交于两点,求线段的长.

来源:盐城市20092010学年度高三年级第三次调研考试
  • 题型:未知
  • 难度:未知

(本小题满分15分)已知椭圆的左焦点为F,左右顶点分别为AC
上顶点为B,过F,B,C三点作,其中圆心P的坐标为
(1) 若椭圆的离心率,求的方程;
(2)若的圆心在直线上,求椭圆的方程.

来源:
  • 题型:未知
  • 难度:未知

(本小题满分12分)
已知分别是直线上的两个动点,线段的长为
的中点.
(1)求动点的轨迹的方程;
(2)过点作直线(与轴不垂直)与轨迹交于两点,与轴交于点.若,证明:为定值.

  • 题型:未知
  • 难度:未知

如图,椭圆 x 2 a 2 + y 2 b 2 = 1 ( a > b > 0 ) 的一个焦点是 F ( 1 , 0 ) O 为坐标原点。
               image.png

(Ⅰ)已知椭圆短轴的两个三等分点与一个焦点构成正三角形,求椭圆的方程;
(Ⅱ)设过点 F 的直线 l 交椭圆于 A B 两点,若直线 l 绕点 F 任意转动,值有 | O A | 2 + | O B | 2 < | A B | 2 ,求 a 的取值范围。

来源:2008年高考福建卷理科数学试题
  • 题型:未知
  • 难度:未知

如图,已知 A B C 的两条角平分线 A D C E 相交于 H B = 60 ° F A C 上,且 A E = A F .
image.png

(Ⅰ)证明: B D H E 四点共圆;
(Ⅱ)证明: C E 平分 D E F .

来源:2009年高考宁夏卷理科数学第22题
  • 题型:未知
  • 难度:未知

选修4-1:几何证明选讲
如图,是圆的直径,弦的延长线相交于点垂直的延长线于点.
求证:(1)
(2)

来源:高三模拟试题
  • 题型:未知
  • 难度:未知

选修4-4 :坐标系与参数方程
已知圆方程为.
(1)求圆心轨迹的参数方程
(2)点是(1)中曲线上的动点,求的取值范围.

  • 题型:未知
  • 难度:未知

已知平面内两定点,动点满足条件:,设点的轨迹是曲线为坐标原点。
(I)求曲线的方程;
(II)若直线与曲线相交于两不同点,求的取值范围;
(III)(文科做)设两点分别在直线上,若,记 分别为两点的横坐标,求的最小值。
(理科做)设两点分别在直线上,若,求面积的最大值。

  • 题型:未知
  • 难度:未知

设抛物线的准线与轴交于点,焦点为;椭圆 为焦点,离心率
(I)当时,①求椭圆的标准方程;②若直线与抛物线交于两点,且线段 恰好被点平分,设直线与椭圆交于两点,求线段的长;
(II)(仅理科做)设抛物线与椭圆的一个交点为,是否存在实数,使得的边长是连续的自然数?若存在,求出这样的实数的值;若不存在,请说明理由。

  • 题型:未知
  • 难度:未知

高中数学平面解析几何的产生──数与形的结合解答题