如图,动点M与两定点A(-1,0),B(2,0)构成△MAB,且∠MBA=2∠MAB.设动点M的轨迹为C.
(1)求轨迹C的方程;
(2)设直线(其中)与y轴相交于点P,与轨迹C相交于点Q,R,且,求的取值范围.
设是曲线上的任一点,是曲线上的任一点,称的最小值为曲线与曲线的距离.
(1)求曲线与直线的距离;
(2)设曲线与直线()的距离为,直线与直线的距离为,求的最小值.
已知椭圆的离心率,左、右焦点分别为,定点P,点在线段的中垂线上.
(1)求椭圆C的方程;
(2)设直线与椭圆C交于M、N两点,直线的倾斜角分别为,求证:直线过定点,并求该定点的坐标.
已知椭圆的中心在坐标原点O,焦点在x轴上,椭圆的短轴端点和焦点所组成的四边形为正方形,两准线间的距离为4.
(Ⅰ)求椭圆的方程;
(Ⅱ)直线过点P(0,2)且与椭圆相交于A、B两点,当ΔAOB面积取得最大值时,求直线l的方程.
圆C与y轴相切,圆心在射线 x-3y=0(x>0)上,且圆C截直线y=x所得弦长为. (1)求圆C的方程。(2)点P(x,y)是圆C上的动点,求x+y的最大值。(3)求过点M(2,1)的圆的弦的中点轨迹方程。
如右图,在平面直角坐标系中,已知“葫芦”曲线由圆弧与圆弧相接而成,两相接点均在直线上.圆弧所在圆的圆心是坐标原点,半径为;圆弧过点.
(I)求圆弧的方程;
(II)已知直线:与“葫芦”曲线交于两点.当时,求直线的方程.
(本题满分16分)本题共有2个小题,第1小题满分6分,第2小题满分10分.
已知两点、,点是直角坐标平面上的动点,若将点的横坐标保持不变、纵坐标扩大到倍后得到点满足.
(1) 求动点所在曲线的轨迹方程;
(2)(理科)过点作斜率为的直线交曲线于两点,且满足,又点关于原点O的对称点为点,试问四点是否共圆,若共圆,求出圆心坐标和半径;若不共圆,请说明理由.
(文科)过点作斜率为的直线交曲线于两点,且满足(O为坐标原点),试判断点是否在曲线上,并说明理由.
已知椭圆C:+=1(a>b>0)的离心率e=,左、右焦点分别为F1、F2,点P(2,),点F2在线段PF1的中垂线上.
(Ⅰ)求椭圆C的方程;
(Ⅱ)设直线l:y=kx+m与椭圆C交于M、N两点,直线F2M与F2N的倾斜角分别为α,β,且α+β=π,试问直线l是否过定点?若过,求该定点的坐标.
(本小题满分14分)设椭圆的左右焦点分别为,离心率,点在直线:的左侧,且F2到l的距离为。
(1)求的值;
(2)设是上的两个动点,,证明:当取最小值时,。
四、选考题(本小题满分10分)
请考生在第(22)、(23)、(24)三题中任选一题做答,如果多做,则按所做的第一题记分.答时用2B铅笔在答题卡上把所选题目的题号涂黑.
22.选修4-1:几何证明选讲
在中,AB=AC,过点A的直线与其外接圆交于点P,交BC延长线于点D。
(1)求证: ;
(2)若AC=3,求的值。
如图,已知椭圆的中心在坐标原点,焦点在轴上,它的一个顶点为,且离心率等于,过点的直线与椭圆相交于不同两点,点在线段上。
(1)求椭圆的标准方程;
(2)设,若直线与轴不重合,
试求的取值范围。
试题篮
()