已知二次函数的导函数的图像与直线平行,且在处取得极小值.设.
(1)若曲线上的点到点的距离的最小值为,求的值;
(2)如何取值时,函数存在零点,并求出零点.
已知函数f(x)=x2+2ax+3,x∈[-4,6].
(1)当a=-2时,求f(x)的最值;
(2)求实数a的取值范围,使y=f(x)在区间[-4,6]上是单调函数;
若二次函数f(x)=ax2+bx+c(a≠0)满足f(x+1)-f(x)=2x,且f(0)=1.
(1)求f(x)的解析式;
(2)若在区间[-1,1]上,不等式f(x)>2x+m恒成立,求实数m的取值范围.
已知二次函数,及函数。
关于的不等式的解集为,其中为正常数。
(1)求的值;
(2)R如何取值时,函数存在极值点,并求出极值点;
(3)若,且,求证: 。
已知二次函数.
(1)若,试判断函数零点个数;
(2)是否存在,使同时满足以下条件
①对任意,且;
②对任意,都有。若存在,求出的值,若不存在,请说明理由。
(3)若对任意且,,试证明存在,
使成立。
二次函数的图像顶点为,且图像在x轴上截得线段长为8
(1)求函数的解析式;
(2)令
①若函数在上是单调增函数,求实数的取值范围;
②求函数在的最小值.
已知x1、x2是关于x的一元二次方程x2+(3a-1)x+2a2-1=0的两个实数根,使得
(3x1-x2)(x1-3x2)=-80成立.求实数a的所有可能值.
试题篮
()