优题课 - 聚名师,上好课(www.youtike.com)
  首页 / 试题库 / 高中数学试题 / 组合几何 / 解答题
高中数学

已知函数.
(1)当时,求曲线在点处的切线方程;
(2)当,且,求函数的单调区间.

  • 题型:未知
  • 难度:未知

(本题满分14分) 已知
(Ⅰ)当时,求曲线在点处的切线方程;
(Ⅱ)若处有极值,求的单调递增区间;
(Ⅲ)是否存在实数,使在区间的最小值是3,若存在,求出的值;
若不存在,说明理由.

  • 题型:未知
  • 难度:未知

已知函数f(x)=(x2+ax-2a2+3a)ex(x∈R),其中a∈R.
(1)当a=0时,求曲线y=f(x)在点(1,f(1))处的切线的斜率;
(2)当a≠时,求函数y=f(x)的单调区间与极值.

  • 题型:未知
  • 难度:未知

(本小题满分13分)已知函数,其中是常数.
(Ⅰ)当时,求在点处的切线方程;
(Ⅱ)求在区间上的最小值.

  • 题型:未知
  • 难度:未知

设函数,函数的图象与轴的交点也在函数的图象上,且在此点有公切线.
(Ⅰ)求的值;
(Ⅱ)试比较的大小.

  • 题型:未知
  • 难度:未知

设函数.
(Ⅰ)求函数的单调区间;
(Ⅱ)当时,是否存在整数,使不等式恒成立?若存在,求整数的值;若不存在,请说明理由.
(Ⅲ)关于的方程上恰有两个相异实根,求实数的取值范围.

  • 题型:未知
  • 难度:未知

已知函数,其中为常数.
(1)若,求曲线在点处的切线方程;
(2)若,求证:有且仅有两个零点;
(3)若为整数,且当时,恒成立,求的最大值.

  • 题型:未知
  • 难度:未知

设函数处取得极值,且曲线在点处的切线垂直于直线
(1)求的值;
(2)若函数,讨论的单调性.

  • 题型:未知
  • 难度:未知

已知函数,其中a>0.
(Ⅰ)求函数f(x)的单调区间;
(Ⅱ)若直线x﹣y﹣1=0是曲线y=f(x)的切线,求实数a的值;
(Ⅲ)设g(x)=xlnx﹣x2f(x),求g(x)在区间[1,e]上的最小值.(其中e为自然对数的底数)

  • 题型:未知
  • 难度:未知

已知函数
(Ⅰ)求
(Ⅱ)求函数图象上的点处的切线方程.

  • 题型:未知
  • 难度:未知

设函数
(1)若函数处与直线相切;
①求实数的值;②求函数上的最大值;
(2)当时,若不等式对所有的都成立,求实数的取值范围.

  • 题型:未知
  • 难度:未知

已知函数的图象经过点,曲线在点处的切线恰好与直线垂直.
(1)求实数的值;
(2)若函数在区间上单调递增,求的取值范围.

  • 题型:未知
  • 难度:未知

己知函数,其中 
(1)求函数的单调区间;
(2)若直线x-y-l=0是曲线y=的切线,求实数的值;
(3)设,求g(x)在区间上的最大值(其中e为自然对数的底数)

  • 题型:未知
  • 难度:未知

已知函数的导函数。  (1)求函数的单调递减区间;
(2)若对一切的实数,有成立,求的取值范围; 
(3)当时,在曲线上是否存在两点,使得曲线在 两点处的切线均与直线交于同一点?若存在,求出交点纵坐标的最大值;若不存在,请说明理由.

  • 题型:未知
  • 难度:未知

(本题12分)
已知函有极值,且曲线处的切线斜率为3.
(1)求函数的解析式;
(2)求在[-4,1]上的最大值和最小值。
(3)函数有三个零点,求实数的取值范围.

  • 题型:未知
  • 难度:未知

高中数学组合几何解答题