优题课 - 聚名师,上好课(www.youtike.com)
  首页 / 试题库 / 高中数学试题 / 组合几何 / 解答题
高中数学

已知函数 .
(1)若上是增函数, 求实数a的取值范围.
(2)若的极大值点,求上的最大值;
(3)在(2)的条件下,是否存在实数b,使得函数的图像与函数的图像恰有3个交点,若存在,求出b的取值范围,若不存在,说明理由.

  • 题型:未知
  • 难度:未知

已知函数为常数),且在点处的切线平行于轴.
(Ⅰ)求实数的值;
(Ⅱ)求函数的单调区间.

  • 题型:未知
  • 难度:未知

已知函数f(x)=-x3-ax2+b2x+1(a、b∈R).
(1)若a=1,b=1,求f(x)的极值和单调区间;
(2)已知x1,x2为f(x)的极值点,且|f(x1)-f(x2)|=|x1-x2|,若当x∈[-1,1]时,函数y=f(x)的图象上任意一点的切线斜率恒小于m,求m的取值范围

来源:
  • 题型:未知
  • 难度:未知

已知
若曲线处的切线与直线平行,求a的值;
时,求的单调区间.

  • 题型:未知
  • 难度:未知

已知函数f(x)=x3+3ax-1的导函数f ′ (x),g(x)=f ′(x)-ax-3.
(1)当a=-2时,求函数f(x)的单调区间;
(2)若对满足-1≤a≤1的一切a的值,都有g(x)<0,求实数x的取值范围;
(3)若x·g ′(x)+lnx>0对一切x≥2恒成立,求实数a的取值范围.

  • 题型:未知
  • 难度:未知

(本题满分12分)
已知函数f(x)=x3+ax2+(a+6)x+b(a,b∈R).
(1)若函数f(x)的图象过原点,且在原点处的切线斜率是3,求a,b的值;
(2)若f(x)为R上的单调递增函数,求a的取值范围.

  • 题型:未知
  • 难度:未知

已知函数,其中a>0.
(Ⅰ)求函数f(x)的单调区间;
(Ⅱ)若直线x﹣y﹣1=0是曲线y=f(x)的切线,求实数a的值;
(Ⅲ)设g(x)=xlnx﹣x2f(x),求g(x)在区间[1,e]上的最小值.(其中e为自然对数的底数)

  • 题型:未知
  • 难度:未知

已知函数.
(Ⅰ)当时,讨论的单调性;
(Ⅱ)若恒成立,求的取值范围.

  • 题型:未知
  • 难度:未知

已知函数
(Ⅰ)求
(Ⅱ)求函数图象上的点处的切线方程.

  • 题型:未知
  • 难度:未知

设函数
(1)若函数处与直线相切;
①求实数的值;②求函数上的最大值;
(2)当时,若不等式对所有的都成立,求实数的取值范围.

  • 题型:未知
  • 难度:未知

已知函数的图象经过点,曲线在点处的切线恰好与直线垂直.
(1)求实数的值;
(2)若函数在区间上单调递增,求的取值范围.

  • 题型:未知
  • 难度:未知

己知函数,其中 
(1)求函数的单调区间;
(2)若直线x-y-l=0是曲线y=的切线,求实数的值;
(3)设,求g(x)在区间上的最大值(其中e为自然对数的底数)

  • 题型:未知
  • 难度:未知

已知函数的导函数。  (1)求函数的单调递减区间;
(2)若对一切的实数,有成立,求的取值范围; 
(3)当时,在曲线上是否存在两点,使得曲线在 两点处的切线均与直线交于同一点?若存在,求出交点纵坐标的最大值;若不存在,请说明理由.

  • 题型:未知
  • 难度:未知

(本题12分)
已知函有极值,且曲线处的切线斜率为3.
(1)求函数的解析式;
(2)求在[-4,1]上的最大值和最小值。
(3)函数有三个零点,求实数的取值范围.

  • 题型:未知
  • 难度:未知

(本小题满分12分)
已知函数f(x)=a-x-lnx(a∈R).
(Ⅰ)求函数f(x)的单调区间;
(Ⅱ)当a=1时,证明:(x-1)(lnx-f(x))≥0.

  • 题型:未知
  • 难度:未知

高中数学组合几何解答题