已知椭圆的左焦点为,离心率为,点M在椭圆上且位于第一象限,直线被圆截得的线段的长为c,.
(Ⅰ)求直线的斜率;
(Ⅱ)求椭圆的方程;
(Ⅲ)设动点在椭圆上,若直线的斜率大于,求直线(为原点)的斜率的取值范围.
如图,设椭圆的左.右焦点分别为,点在椭圆上,,,的面积为.
(1)求该椭圆的标准方程;
(2)设圆心在轴上的圆与椭圆在轴的上方有两个交点,且圆在这两个交点处的两条切线相互垂直并分别过不同的焦点,求圆的半径.
设,分别是椭圆的左右焦点,M是C上一点且与x轴垂直,直线与C的另一个交点为N.
(1)若直线MN的斜率为,求C的离心率;
(2)若直线MN在y轴上的截距为2,且,求a,b.
已知椭圆的下顶点为,到焦点的距离为.
(Ⅰ)设Q是椭圆上的动点,求的最大值;
(Ⅱ)若直线与圆O:相切,并与椭圆交于不同的两点A、B.当,且满足时,求AOB面积S的取值范围.
已知抛物线的顶点为原点,其焦点到直线:的距离为.设为直线上的点,过点作抛物线的两条切线,其中为切点.
(Ⅰ)求抛物线的方程;
(Ⅱ)当点为直线上的定点时,求直线的方程;
(Ⅲ)当点在直线上移动时,求的最小值.
无穷数列 :,,……,,……,满足,且,对于数列,记,其中表示集合中最小的数.
(1)若数列:1,3,4,7,……,写出,,……,;
(2)若,求数列前项的和;
(3)已知,求的值.
试题篮
()