从20m高的楼房的阳台上以20m/s的初速度竖直向上抛出一小球,不计空气阻力,g取10m/s2,求小球运动到离抛出点15m处所经历的时间可能是( )
A.1s | B.2s | C.3s | D. |
某野战部队科研小组采用了偏二甲肼加氧化二氮(氧化剂)为燃料,精心研制了一枚小型火箭,现点燃火箭使火箭在垂直于地面的方向上运动.火箭点火后可认为做匀加速直线运动,经过5 s 到达离地面100 m高处时燃料恰好用完,若不计空气阻力,取g=" 10" m/s2,求:
燃料恰好用完时火箭的速度.
火箭上升离地面的最大高度.
火箭从发射到残骸落回地面所用的总时间.
如图所示,离地面足够高处有一竖直的空管,质量为2kg,管长为24m,M、N为空管的上、下两端,空管受到F=16N竖直向上的拉力作用,由静止开始竖直向下做加速运动,同时在M处一个大小不计的小球沿管的轴线以初速度v0竖直上抛,不计一切阻力,取g=10m/s2.求:
空管的加速度的大小与方向
若小球上抛的初速度为10m/s,经过多长时间从管的N端穿出?
若此空管的N端距离地面64m高,欲使在空管到达地面时小球必须落到管内,在其他条件不变的前提下,求小球的初速度v0大小的范围.
将物体以60J的初动能竖直向上抛出,当它上升到某点P时,动能减为10J,机械能损失10J,若空气阻力大小不变,则物体落回到抛出点时的动能为
A.36J | B.40J | C.48J | D.50J |
竖直向上射出的子弹,到达最高点后又返回原处,若子弹在运动过程中受到的空气阻力与速度的大小成正比,则在整个过程中,子弹的加速度大小的变化是
A.始终变大 | B.始终变小 | C.先变大后变小 | D.先变小后变大 |
以一定的初速度竖直向上抛出一个小球,小球上升的最大高度为h,空气阻力的大小恒为F,则从抛出到落回到抛出点的过程中,空气阻力对小球做的功为: ( )
A.0 | B.-Fh | C.Fh | D.-2Fh |
以35 m/s的初速度竖直向上抛出一个小球,不计空气阻力,g取10 m/s2。 以下判断正确的是( )
A.小球到最大高度时的速度为0 |
B.小球到最大高度时的加速度为0 |
C.小球上升的最大高度为61.25 m |
D.小球上升阶段所用的时间为3.5 s |
一定质量的小球自t=0时刻从水平地面上方某处自由下落,小球与地面碰后反向弹回,不计空气阻力,也不计小球与地面碰撞的时间,小球距地面的高度h与运动时间t关系如右图所示,取g=10m/s2。则下列说法正确的是( )
A.小球第一次与地面碰撞前的最大速度为15m/s |
B.小球第一次与地面碰撞后的最大速度为12m/s |
C.小球在4~5秒内小球走过的路程为2.5m |
D.小球将在t=6s时与地面发生第四次碰撞 |
一个从地面竖直上抛的物体,它两次经过一个较低点A的时间间隔为tA,两次经过一个较高点B 的时间间隔为tB.则A、B之间的距离为 ( )
A. B. C. D.
如图所示,质量为m=0.1kg可视为质点的小球从静止开始沿半径为R1=35cm的圆弧轨道AB由A点滑到B点后,进入与AB圆滑连接的圆弧管道BC,管道出口为C,圆弧管道半径为R2=15cm,在紧靠出口C处,有一水平放置且绕其水平轴线匀速旋转的圆筒(不计筒皮厚度),筒上开有小孔D,筒旋转时,小孔D恰好能经过出口C处,若小球射出C出口时,恰好能接着穿过D孔,并且还能再从D孔向上穿入圆筒,小球返回后又先后两次向下穿过D孔而未发生碰撞,不计摩擦和空气阻力,取g=10m/s2,问:
小球到达B点的瞬间前后对轨道的压力分别为多大?
小球到达C点的速度多大?
圆筒转动的最大周期T为多少?
小球由地面竖直上抛,上升的最大高度为H,设所受阻力大小恒定,地面为零势能面.在上升至离地高度h处,小球的动能是势能的两倍,在下落至离地高度h处,小球的势能是动能的两倍,则h等于( )
A.H/9 | B.2H/9 | C.3H/9 | D.4H/9 |
从20m高的楼房的阳台上以20m/s的初速度竖直向上抛出一小球,不计空气阻力,g取10m/s2,求小球运动到离抛出点15m处所经历的时间可能是
A.1s | B.2s | C.3s | D. |
某物体以30m/s的初速度竖直上抛,不计空气阻力,g取10m/s2。求:5s内物体的(1)路程S (2) 位移X (3)速度改变量的大小和方向
竖直上抛运动的物体,当它到达最高点时具有
A.向上的速度和向上的加速度 |
B.速度为零和加速度向上 |
C.速度为零和加速度向下 |
D.速度为零和加速度也为零 |
试题篮
()