在某高处A点,以v0的速度同时竖直向上与向下抛出A.b两球,不计空气阻力,则下列说法中正确的是( )
A.两球落地的时间差为v0/g
B.两球落地的时间差为2v0/g
C.两球落地的时间差与高度有关
D.条件不足,无法确定
将一物体从地面以一定的初速度竖直上抛,从抛出到落回原地的过程中,空气阻力恒定,以地面为零重力势能参考平面,则下列反映物体的机械能E、动能Ek、重力势能Ep及克服阻力做的功W随距地面高度h变化的四个图线中,可能正确的是( )
从地面上以初速度v0=20m/s竖直向上抛出一质量为m=2kg的小球,若运动过程中小球受到的空气阻力与其速率成正比关系,小球运动的速率随时间变化规律如图所示,t1时刻到达最高点,再落回地面,落地时速率为v1=10m/s,且落地前球已经做匀速运动,重力加速度g=10m/s2。求:
(1)小球从抛出到落地过程中克服空气阻力所做的功;
(2)小球抛出瞬间的加速度大小。
(多选)某物体以30 m/s的初速度竖直上抛,不计空气阻力, g 取10 m/s 2 。5 s内下列关于物体的运动过程中,说法正确的是( )
A.路程为65m |
B.位移大小为25 m,方向向上 |
C.速度改变量的大小为10 m/s |
D.平均速度大小为13 m/s,方向向上 |
在地质、地震、勘探、气象和地球物理等领域的研究中,需要精确的重力加速度g值,g值可由实验精确测定.近年来测g值的一种方法叫“对称自由下落法”,它是将测g值归于测长度和时间,以稳定的氦氖激光的波长为长度标准,用光学干涉的方法测距离,以铷原子钟或其他手段测时间,此方法能将g值测得很准.具体做法是:将真空长直管沿竖直方向放置,自其中的O点向上抛小球,从抛出小球至小球又落回抛出点的时间为T2;小球在运动过程中经过比O点高H的P点,小球离开P点至又回到P点所用的时间为T1.由T1、T2和H的值可求得g等于( )
A. | B. | C. | D. |
某物体以30m/s的初速度竖直上抛,不计空气阻力,g=10m/s2,则5s内物体的 ( )
A.路程为65m |
B.位移大小为25m,方向竖直向上 |
C.速度改变量的大小为10m/s,方向竖直向下 |
D.平均速度大小为13m/s,方向竖直向上 |
把皮球从地面以某一初速度竖直上抛,经过一段时间后皮球又落回抛出点,上升最大高度的一半处记为A点。以地面为零势能面。设运动过程中受到的空气阻力大小与速率成正比,则
A.皮球上升过程中的克服重力做功等于下降过程中重力做功 |
B.皮球上升过程中重力的冲量大于下降过程中重力的冲量 |
C.皮球上升过程与下降过程空气阻力的冲量大小相等 |
D.皮球下降过程中重力势能与动能相等的位置在A点下方 |
将一个小球以某一初速度竖直上抛,空气阻力与速度大小成正比,且始终小于小球的重力。从抛出到落回抛出点的全过程中,下列判断正确的是
A.上升经历的时间一定小于下降经历的时间 |
B.小球的加速度方向不变,大小一直在减小 |
C.小球的加速度方向不变,大小先减小后增大 |
D.上升到最高点时,小球的速度为零,加速度也为零 |
已知地球表面的重力加速度是g,地球的半径为R,林帅同学在地球上能向上竖直跳起的最大高度是h。但因为某种特殊原因,地球质量保持不变,而半径变为原来的一半,忽略自转的影响,下列说法正确的是
A.地球的第一宇宙速度为原来的倍 |
B.地球表面的重力加速度变为 |
C.地球的密度变为原来的4倍 |
D.林帅在地球上以相同的初速度起跳后,能达到的最大高度是 |
物体做竖直上抛运动,在落回抛出点时该物体的速率是30m/s,那么物体(g取10m/s2)
A.由抛出到落回抛出点的时间是6s |
B.只有在2s末时经过40m高处 |
C.经过25m高处时的瞬时速率只能是20 m/s |
D.第3s内的平均速度与第3.5s时的瞬时速度相等 |
关于竖直上抛运动的上升过程和下落过程(起点和终点相同),下列说法正确的是:( )
A.物体上升过程所需的时间与下降过程所需的时间相同 |
B.物体上升的初速度与下降回到出发点的末速度相同 |
C.两次经过空中同一点的速度大小相等方向相反 |
D.物体上升过程所需的时间比下降过程所需的时间短 |
竖直上抛一个小球,3s末落回抛出点,则小球在第2s内的位移是(不计空气阻力,取向上为正方向),重力加速度g取10 m/s2 ( )
A.10m | B.0 | C.-5m | D.-1.25m |
某物体以30 m/s的初速度竖直上抛,不计空气阻力,g取,5 s内物体的( )
A.路程为65m |
B.位移大小为25 m,方向向上 |
C.速度改变量的大小为10m/s |
D.平均速度大小为13 m/s,方向向上 |
试题篮
()