如图所示,倾斜轨道AB的倾角为37o,CD、EF轨道水平,AB与CD通过光滑圆弧管道BC连接,CD右端与竖直光滑圆周轨道相连。小球可以从D进入该轨道,沿轨道内侧运动,从E滑出该轨道进入EF水平轨道。a、b为两完全相同的小球,a球由静止从A点释放,在C处与b球发生弹性碰撞。已知AB长为5R,CD长为R,重力加速度为g,小球与斜轨AB及水平轨道CD、EF的动摩擦因数均为0.5,sin37o=0.6,cos37o=0.8,圆弧管道BC入口B与出口C的高度差为1.8R。求:
⑴a球滑到斜面底端C时速度为多大?a、b球在C处碰后速度各为多少?
⑵要使小球在运动过程中不脱离轨道,竖直圆周轨道的半径R′应该满足什么条件?若R′=2.5R,两球最后所停位置距D(或E)多远?
注:在运算中,根号中的数值无需算出。
如图所示,竖直放置的两平行带电金属板间的匀强电场中有一根质量为m的均匀绝缘杆,上端可绕轴O在竖直平面内转动,下端固定一个不计重力的点电荷A,带电量+q。当板间电压为U1时,杆静止在与竖直方向成=45°的位置;若平行板以M、N为轴同时顺时针旋转=15°的角,而仍要杆静止在原位置上,则板间电压应变为U2。求:U1/U2的比值。
某同学是这样分析求解的:
两种情况中,都有力矩平衡的关系。设杆长为L,两板间距为d,当平行板旋转后,电场力就由变为,电场力对轴O的力臂也发生相应的改变,但电场力对轴O的力矩没有改变。只要列出两种情况下的力矩平衡方程,就可求解了。
你觉得他的分析是否正确?如果认为是正确的,请继续解答;如果认为有错误之处,请说明理由并进行解答。
两人在河两岸用绳子拉小船使其在河流中行驶,甲的拉力是200 N,方向与航向间的夹角为60°,乙的拉力是200 N.要使小船能在河流中间沿直线行驶,那么乙用力的方向如何?小船受到两拉力的合力是多少?
如图,轻绳OA一端系在天花板上,与竖直线夹角37°,轻绳OB水平,一端系在墙上,O点处挂一重为40N的物体.(cos37°="0.8," sin37°=0.6) 求OA、OB的拉力各为多大?
塔式起重机的结构如图所示,设机架重P=400 kN,悬臂长度为L=10 m,平衡块重W=200 kN,平衡块与中心线OO/的距离可在1 m到6 m间变化,轨道A、B间的距离为4 m。
⑴当平衡块离中心线1 m,右侧轨道对轮子的作用力fB是左侧轨道对轮子作用力fA的2倍,问机架重心离中心线的距离是多少?
⑵当起重机挂钩在离中心线OO/10 m处吊起重为G=100 kN的重物时,平衡块离OO/的距离为6 m,问此时轨道B对轮子的作用力FB时多少?
图中是用电动砂轮打磨工件的装置,砂轮的转轴过图中O点垂直于纸面,AB是一长度,质量的均匀刚性细杆,可绕过A端的固定轴在竖直面(图中纸面)内无摩擦地转动,工件C固定在AB杆上,其质量,工件的重心、工件与砂轮的接触点P以及O点都在过AB中点的竖直线上,P到AB杆的垂直距离,AB杆始终处于水平位置,砂轮与工件之间的动摩擦因数
(1)当砂轮静止时,要使工件对砂轮的压力N,则施于B端竖直向下的力应是多大?
(2)当砂轮逆时针转动时,要使工件对砂轮的压力仍为N,则施于B端竖直向下的力应是多大?
如图所示,表面光滑、质量不计的尖劈,插在缝A、B之间,尖劈的一个角为,在尖劈背上加一压力F,则尖劈对A侧压力和对B侧压力分别为多大?(在图上画出力的示意图)
质量为m=19kg的物体放在水平地面上,物体与地面之间的动摩擦因数为0.25。
(1)如图甲所示,对物体施加一个多大的水平力F1,可使物体在地面上匀速运动?
(2)如图乙所示,如果对物体施加一个与水平方向成37°斜向上的力F2,则F2多大时才可使物体在地面上匀速运动?(已知sin37°=0.6,cos37°=0.8。)
(12分)如图所示,一轻质三角形框架B处悬挂一定滑轮(质量可忽略不计)。一体重为500N的人通过跨定滑轮的轻绳匀速提起一重为300N的物体。
(1)此时人对地面的压力是多大?
(2)斜杆BC,横杆AB所受的力是多大?
如图所示,以A、B和C、D为断点的两半圆形光滑轨道固定于竖直平面内,一滑板静止在光滑的地面上,左端紧靠B点,上表面所在平面与两半圆分别相切于B、C两点,一物块(视为质点)被轻放在水平匀速运动的传送带上E点,运动到A点时刚好与传送带速度相同,然后经A点沿半圆轨道滑下,再经B点滑上滑板,滑板运动到C点时被牢固粘连。物块可视为质点,质量为m,滑板质量为M=2m,两半圆半径均为R,板长l=6.5R,板右端到C点的距离L在R<L<5R范围内取值,E点距A点的距离s=5R,物块与传送带、物块与滑板间的动摩擦因数均为,重力加速度g已知。
(1)求物块滑到B点的速度大小;
(2)求物块滑到B点时所受半圆轨道的支持力的大小;
(3)试讨论物块从滑上滑板到离开右端的过程中,克服摩擦力做的功与L的关系;并判断物块能否滑到CD轨道的中点。
如图所示,竖直放置的光滑半圆形轨道与动摩擦因数为的水平面AB相切于B点,A、B两点相距L=2.5m,半圆形轨道的最高点为C,现将一质量为m=0.1kg的小球(可视为质点)以初速度v0=9m/s沿AB轨道弹出,g=10m/s2。求
(1)小球到达B点时的速度大小及小球在A、B之间的运动时间;
(2)欲使小球能从最高点C水平抛出,则半圆形轨道的半径应满足怎样的设计要求?
(3)在满足上面(2)设计要求的前提下,半圆形轨道的半径为多大时可以让小球落到水平轨道上时离B点最远?最远距离是多少?
如图所示,斜面底端与一水平板左端a相接,平板长2L,中心C固定在高为R=L=1m的竖直支架上,支架的下端与垂直于纸面的固定转轴O连接,因此平板可绕转轴O沿顺时针方向翻转。当把质量m=0.5kg的小物块A轻放在C点右侧离C点0.2 m处时,平板左端a恰不受支持力。A与斜面间和平板的动摩擦因数均为μ=0.2,A从斜面由静止下滑,不计小物块在a处碰撞时的能量损失。重力加速度g="10" m/s2。现要保证平板不翻转,求:
(1)小物块能在平板上滑行的最大距离。
(2)有同学认为,在h0一定的情况下,平板是否翻转与斜面的倾角有关,倾角越大,越容易翻转。请用相关知识分析上述认识是否正确。
(3)若h0=1m,斜面倾角不能超过多大?
试题篮
()