如图,用OA、OB两根轻绳将花盆悬于两竖直墙之间,开始时OB绳水平.现保持O点位置不变,改变OB绳长使绳右端由B点缓慢上移至B′点,此时OB′与OA之间的夹角θ<90°.设此过程OA、OB绳的拉力分别为FOA、FOB,则下列说法正确的是( )
A.FOA一直减小 B.FOA一直增大
C.FOB一直减小 D.FOB先减小后增大
不在同一直线上的两个共点力和的大小不同,夹角为,它们的合力大小为F,则
A.合力F可能沿和夹角的角平分线 |
B.保持和的大小不变,夹角增大,则合力F一定减小 |
C.保持夹角不变,若和中的一个减小,合力F一定减小 |
D.保持夹角不变,若和同时增大一倍,合力F也增大一倍 |
如图所示,光滑水平地面上有一直角三角形斜面体B靠在竖直墙壁上,物块A放在斜面体B上,开始A、B静止。现用水平力F推A,A、B仍静止,则此时B受力的个数可能是( )
A.3个 B.4个 C.5个 D.6个
如图所示,斜面顶端固定有半径为R的轻质滑轮,用不可伸长的轻质细绳将半径为r的球沿斜面缓慢拉升。不计各处摩擦,且R>r。设绳对球的拉力为F,斜面对球的支持力为N,则关于F和N的变化情况,下列说法正确的是( )
A.F一直增大,N一直减小 |
B.F一直增大,N先减小后增大 |
C.F一直减小,N保持不变 |
D.F一直减小,N一直增大 |
两个共点力大小都是60N,要使这两个力的合力是30N,这两个力的夹角θ应满足下列哪一项( )
A.θ=60° | B.θ=45° | C.θ=30° | D.cos(θ/2)=0.25 |
如图所示,质量为 M 的三角形木块 a 放在水平面上,把另一质量为 m 的木块 b 放在a 的斜面上,斜面倾角为 α ,对 a 施一水平力 F,使 b 不沿斜面滑动,不计一切摩擦,则b 对 a 的压力大小为 ( )
A.mgcosα | B.Mg/cos α |
C. | D. |
如图所示,将一个表面光滑的铁球放在两块斜面板AB和CD之间,两板与水平面的夹角都是60°。已知重力加速度大小为g,不计空气阻力,则
A.如果突然撤去CD板,则撤去后铁球对AB板的压力减小 |
B.如果突然撤去CD板,则撤去后铁球对AB板的压力增大 |
C.如果保持AB板不动,使CD板与水平面的夹角缓慢减小,则球对AB板的压力先减小后增大 |
D.如果保持AB板不动,使CD板与水平面的夹角缓慢减小,则球对CD板的压力先减小后增大 |
如图甲所示,在圆柱体上放一物块P,圆柱体绕水平轴O缓慢转动,从A转至A′的过程,物块与圆柱体保持相对静止,则图乙反映的是该过程中( )
A.重力随时间变化的规律 | B.支持力随时间变化的规律 |
C.摩擦力随时间变化的规律 | D.合外力随时间变化的规律 |
如图所示,一光滑半圆形碗固定在水平面上,质量为m1的小球用轻绳跨过碗口并连接质量分别为m2和m3的物体,平衡时碗内小球恰好与碗之间没有弹力,两绳与水平方向夹角分别为53°、37°,则m1:m2:m3的比值为(已知sin53°=0.8,cos53°=0.6)( )
A.5:4:3 | B.4:3:5 | C.3:4:5 | D.5:3:4 |
已知两个共点力的合力为F,如果它们之间的夹角固定不变,使其中的一个力增大,则
A.合力F一定增大 | B.合力F的大小可能不变 |
C.合力F可能增大 | D.合力F可能减小 |
如图所示,小车内有一固定光滑斜面,一个小球通过细绳与车顶相连,小车在水平面上做直线运动,细绳始终保持竖直,关于小球的受力情况,下列说法中正确的是( )
A.若小车静止,绳对小球的拉力可能为零 |
B.若小车静止,斜面对小球的支持力一定为零 |
C.若小车向右运动,小球一定受两个力的作用 |
D.若小车向右运动,小球一定受三个力的作用 |
下列说法正确的是( )
A.两个共点力的合力为一定值,则一个力的两个分力也是定值 |
B.物体做曲线运动时,其合力的瞬时功率可能为零 |
C.一对平衡力所做功可能为零,也可能大小相等、一正一负 |
D.在月球上举重比在地球上容易,所以同一个物体在月球上比在地球上惯性小 |
E.在国际单位制中,质量、长度、时间、电流都属于基本物理量
1800年前,当众人面对大象这样的庞然大物,因为缺少有效的称量工具而束手无策的时候,曹冲想出了称量大象体重的方法,被世人所称道,下列物理学习或研究中用到的方法与“曹冲称象”的方法相同的是( )
A.“质点”的概念 |
B.合力与分力的关系 |
C.“瞬时速度”的概念 |
D.研究加速度与合力、质量的关系 |
试题篮
()