如图所示,一带电小球质量为m,用丝线悬挂于O点,并在竖直平面内摆动,最大摆角为60°,水平磁场垂直于小球摆动的平面,当小球自左方摆到最低点时,悬线上的张力恰为零,则小球自右方摆到最低点时悬线上的张力为 ( )
A.0 | B.2mg图 2 |
C.4mg | D.6mg |
如图所示,有一长为R的细线,细线的一端固定在O点,另一端拴一质量为m的小球,现使小球恰好能在竖直平面内做完整的圆周运动,求:
小球通过最高点A时的速度vA;
小球通过最低点B时,细线对小球的拉力;
小球运动到A点或B点时细线断裂,小球落到水平地面时到C点的距离若相等,则OC间距离L等于多少?
如图所示,将倾角θ=30°、表面粗糙的斜面固定在地面上,用一根轻质细绳跨过两个光滑的半径很小的滑轮连接甲、乙两物体(均可视为质点),把甲物体放在斜面上且细绳与斜面平行,把乙物体悬在空中,并使细绳拉直且偏离竖直方向α=60°。开始时甲、乙均静止。现同时释放甲、乙两物体,乙物体将在竖直平面内往返运动,测得绳长OA为l="0.5" m,当乙物体运动经过最高点和最低点时,甲物体在斜面上均恰好未滑动,已知乙物体的质量为 m="1" kg,忽略空气阻力,取重力加速度g="10" m/s2,求:
乙物体在竖直平面内运动到最低点时的速度大小以及所受的拉力大小
甲物体的质量以及斜面对甲物体的最大静摩擦力的大小
斜面与甲物体之间的动摩擦因数μ(设最大静摩擦力等于滑动摩擦力)
同步卫星离地心距离为,运行速率为,加速度为,地球赤道上的物体随地球自转的向心加速度为,第一宇宙速度为,地球的半径为,则下列结果正确的是( )
A. | B. | C. | D. |
0.4 m长的轻杆上端固定800g的小球,小球(可视为质点)绕杆在竖直面内做圆周运动。当它经过最高点时速度为1m/s,杆对小球作用力(g=10m/s2)为
A.6N, 拉力 | B.6N, 支持力 | C.8N, 支持力 | D.10N, 支持力 |
如图所示,O1、O2为两个皮带轮,O1轮的半径为R1,O2轮的半径为R2,且R1>R2,M为O2轮边缘上的一点,N为O1轮中的一点(N在图中未画出,但不在O1轮边缘,也不在圆心处,)当皮带传动时(不打滑)
①M点的线速度一定大于N点的线速度
②M点的线速度可能小于N点的线速度
③M点的向心加速度一定大于N点的向心加速度
④M点的向心加速度可能小于N点的向心加速度
A.①③ | B.②④ | C.①④ | D.②③ |
如图,在半径R=0.1m的水平圆板中心轴正上方高h=0.8m处以v0=3m/s的速度水平抛出一球,圆板做匀速转动。当圆板半径OB转到图示位置时,小球开始抛出。要使球与圆板只碰一次,且落点为B,求:
(1) 小球击中B点时的速度大小;
(2)若小球在空中运动的时间为0.4s,圆板转动的角速度ω为多少?
2010年诺贝尔物理学奖授予英国曼彻斯特大学的科学家安德烈·海姆和康斯坦丁·诺沃肖洛夫,以表彰他们在石墨烯材料方面的卓越研究.石墨烯是碳的二维结构,它是目前世界上已知的强度最高的材料,这为“太空电梯”缆线的制造打开了一扇希望之门,使人类通过“太空电梯”进入太空成为可能.假设有一个“太空电梯”从地面赤道上某处连接到其正上方的地球同步飞船上.关于该“太空电梯”上高度不同的部位,下列说法正确的是
A.加速度相同 | B.线速度相同 |
C.角速度相同 | D.各质点都处于失重状态 |
如图所示,一水平圆盘可绕通过盘心O且垂直于盘面的竖直轴转动.在圆盘上放置小木块,它随圆盘一起做匀速圆周运动.木块受力的个数为
A.1个 | B.2个 | C.3个 | D.4个 |
做匀速圆周运动的物体,在运动过程中下列物理量发生变化的是
A.周期 | B.角速度 | C.线速度 | D.向心加速度 |
甲、乙两物体在水平面内做匀速圆周运动,半径之比为1:2,相同时间内甲转动20周,乙转动了40周,问甲、乙转动的角速度之比,周期之比,线速度之比为各为多少。
一质量为10kg物体在做匀速圆周运动,10s内沿半径为20m的圆周运动了100m,求:
(1)该物体运动的线速度、角速度和周期;
(2)该物体在运动过程中所受的向心力。
质量为m的小球由轻绳a、b分别系于一轻质木架上的A和C点,绳长分别为la、lb,如图所示。当轻杆绕轴BC以角速度ω匀速转动时,小球在水平面内做匀速圆周运动,绳a在竖直方向,绳b在水平方向,当小球运动到图示位置时,绳b被烧断的同时轻杆停止转动,则
A.小球仍在水平面内做匀速圆周运动 |
B.在绳b被烧断瞬间,a绳中张力突然增大 |
C.若角速度ω较小,小球在垂直于平面ABC的竖直平面内摆动 |
D.绳b未被烧断时,绳a的拉力大于mg,绳b的拉力为 |
试题篮
()