如图所示.质量M=2kg的足够长的小平板车静止在光滑水平面上,车的一端静止着质量为MA=2kg的物体A(可视为质点)。一个质量为m=20g的子弹以500m/s的水平速度迅即射穿A后,速度变为100m/s,最后物体A静止在车上。若物体A与小车间的动摩擦因数μ=0.5(g取10m/s2。)
(ⅰ)平板车最后的速度是多大?
(ⅱ)全过程损失的机械能为多少?
(ⅲ)A在平板车上滑行的时间为多少?
如图所示,质量为m的由绝缘材料制成的球与质量为M=19m的金属球并排悬挂,摆长相同,均为l。现将绝缘球拉至与竖直方向成θ=60°的位置自由释放,摆至最低点与金属球发生弹性碰撞。在平衡位置附近存在垂直于纸面的磁场,已知由于磁场的阻尼作用,金属球总能在下一次碰撞前停在最低点处,重力加速度为g。求:
(1)第一次碰撞前绝缘球的速度v0;
(2)第一次碰撞后绝缘球的速度v1;
(3)经过几次碰撞后绝缘球偏离竖直方向的最大角度将小于37°
(你可能用到的数学知识:sin37°=0.6,cos37°=0.8,0.812=0.656,0.813=0.531,0.814=0.430,0.815=0.349,0.816=0.282)
如图所示,直角坐标系Oxy位于竖直平面内,x轴与绝缘的水平面重合,在y轴右方有垂直纸面向里的匀强磁场和竖直向上的匀强电场.质量为m2=8×10-3kg的不带电小物块静止在原点O,A点距O点l=0.045m,质量m1=1×10-3kg的带电小物块以初速度v0=0.5m/s从A点水平向右运动,在O点与m2发生正碰并把部分电量转移到m2上,碰撞后m2的速度为0.1m/s,此后不再考虑m1、m2间的库仑力.已知电场强度E=40N/C,小物块m1与水平面的动摩擦因数为μ=0.1,取g=10m/s2,求:
(1)碰后m1的速度;
(2)若碰后m2做匀速圆周运动且恰好通过P点,OP与x轴的夹角θ=30°,OP长为lop=0.4m,求磁感应强度B的大小;
(3)其它条件不变,若改变磁场磁感应强度的大小为B/使m2能与m1再次相碰,求B/的大小?
如下图所示,质量为M的平板车P高h,质量为m的小物块Q的大小不计,位于平板车的左端,系统原来静止在光滑水平地面上.一不可伸长的轻质细绳长为R,一端悬于Q正上方高为R处,另一端系一质量也为m的小球(大小不计).今将小球拉至悬线与竖直位置成60°由静止释放,小球到达最低点时与Q发生完全弹性正碰。已知Q离开平板车时速度大小是平板车速度的两倍,Q与P之间的动摩擦因数为μ,平板车与Q的质量关系是M:m=4:1,重力加速度为g.求:
(1)小物块Q离开平板车P时,P和Q的速度大小?
(2)平板车P的长度为多少?
(3)小物块Q落地时与平板车P的水平距离为多少?
如图10所示,在光滑的水平面上有一辆长平板车,它的中央放一个质量为m的小物块,物块跟车表面的动摩擦因数为μ,平板车的质量M=2m,车与物块一起向右以初速度v0匀速运动,车跟右侧的墙壁相碰。设车跟墙壁碰撞的时间很短,碰撞时没有机械能损失,重力加速度为g,求:
(1)平板车的长度L至少是多长时,小物块才不会从车上落下来;
(2)若在车的左侧还有一面墙壁,左右墙壁相距足够远,使得车跟墙壁相碰前,车与小物块总是相对静止的,车在左右墙壁间来回碰撞,碰撞n次后,物块跟车一起运动的速度Vn;
(3)在车与左右墙壁来回碰撞的整个过程中,小物块在车表面相对于车滑动的总路程S。
如图所示,足够长的木板B静止在光滑水平地面上.小滑块A静止放在木板B的左端,已知mA=1kg、mB=2kg、滑块A与木板B间的动摩擦因数,现对小滑块A施加一个竖直平面内斜向右上方大小为10N的外力F,且F作用3s后撤去.若图中,问:
(1)施加外力F时,滑块A及木板B加速度大小分别为多少?
(2)最终滑块A、木板B会一起在光滑水平面上做匀速运动,它们匀速运动的速度为多少?
(3)整个过程A、B组成的系统由于摩擦产生的内能是多少?
如图1所示,木板A静止在光滑水平面上,一小滑块B(可视为质点)以某一水平初速度从木板的左端冲上木板。
(1)若木板A的质量为M,滑块B的质量为m,初速度为v0,且滑块B没有从木板A的右端滑出,求木板A最终的速度v。
(2)若滑块B以v1=3.0m/s的初速度冲上木板A,木板A最终速度的大小为v=1.5m/s;若滑块B以初速度v2=7.5m/s冲上木板A,木板A最终速度的大小也为v=1.5m/s。已知滑块B与木板A间的动摩擦因数μ=0.3,g取10m/s2。求木板A的长度L。
(3)若改变滑块B冲上木板A的初速度v0,木板A最终速度v的大小将随之变化。请你在图2中定性画出v-v0图线。
如图所示,三个质量分别为3kg、1kg.1kg的木块A.B、C放置在光滑水平轨道上,开始时B、C均静止,A以初速度v0=5m/s向右运动,A与B碰撞后分开,B又与C发生碰撞并粘在一起,此后A与B间的距离保持不变.
①求B与C碰撞前B的速度大小;
②若A与B的碰撞时间约为0.01s,求B对A的作用力F.
质量为0.1kg 的弹性球从空中某高度由静止开始下落,该下落过程对应的v﹣t图象如图所示.球与水平地面相碰后离开地面时的速度大小为碰撞前的.设球受到的空气阻力大小恒为f,取g=10m/s2,求:
(1)弹性球受到的空气阻力f的大小;
(2)弹性球第一次碰撞后反弹的高度h.
质量均为m=2kg的三物块A、B、C,物块A、B用轻弹相连,初始时弹簧处于原长,A、B两物块都以v=3m/s的速度在光滑的水平地面上运动,物块C静止在前方,如图所示。B与C碰撞后二者会粘在起运动。求在以后的运动中:
(1)从开始到弹簧的弹性势能第一次达到最大时弹簧对物块A的冲量;
(2)系统中弹性势能的最大值EP是多少?
如图所示,竖直放置的两块足够长的平行金属板,相距0.08m,两板间的电压是2400V,在两板间的电场中用丝线悬挂着质量是5×10﹣3kg的带电小球,平衡后,丝线跟竖直方向成30°角,若将丝线剪断,则在剪断丝线后,(g取10m/s2)
(1)说明小球在电场中做什么运动;
(2)求小球的带电量;
(3)设小球原来到负极板的距离为0.06m,则经过多少时间小球碰到金属板?
如图,光滑水平直轨道上有三个质量均为m的物块A、B、C. B的左侧固定一轻弹簧(弹簧左侧的挡板质量不计).设A以速度v0朝B运动,压缩弹簧;当A、B速度相等时,B与C恰好相碰并粘接在一起,然后继续运动.假设B和C碰撞过程时间极短.求从A开始压缩弹簧直至与弹簧分离的过程中,
(1)整个系统损失的机械能;
(2)A与挡板分离时,A的速度(计算结果可用根号表示).
如图所示,在光滑的水平面上,一个质量为3m的小球A,以速度v跟质量为2m的静止的小球B发生碰撞。
(1)若A、B两球发生的是完全非弹性碰撞,求碰撞后小球B的速度?
(2)若A、B两球发生的是弹性碰撞,求碰撞后小球B的速度?
(18分)如图所示,半径R=1m的四分之一光滑圆轨道最低点D的切线沿水平方向,水平地面上紧靠轨道依次排放两块完全相同的木板A、B,长度均为L=2m,质量均为m2=1kg,木板上表面与轨道末端相切.质量m1=lkg的小物块(可视作质点)自圆轨道末端C点的正上方H=0.8m高处的A点由静止释放,恰好从C点切入圆轨道。物块与木板间的动摩擦因数为,木板与水平地面间的动摩擦因数=0.2,重力加速度为g=l0m/s,最大静摩擦力与滑动摩擦力相等。
(1)求物块到达圆轨道最低点D时所受轨道的支持力多大。
(2)若物块滑上木板A时,木板不动,而滑上木板B时,木板B开始滑动,求应满足的条件。
(3)若地面光滑,物块滑上木板后,木板A、 B最终共同运动,求应满足的条件。
试题篮
()