如图所示,一质量M=2kg的带有弧形轨道的平台置于足够长的水平轨道上,弧形轨道与水平轨道平滑连接,水平轨道上静置一小球B。从弧形轨道上距离水平轨道高h=0.3m处由静止释放一质量mA=1kg的小球A,小球A沿轨道下滑后与小球B发生弹性正碰,碰后小球A被弹回,且恰好追不上平台。已知所有接触面均光滑,重力加速度为g。求小球B的质量。
如图所示,有一内表面光滑的金属盒,底面长为L=1.2m,质量为m1=1kg,放在水平面上,与水平面间的动摩擦因数为μ=0.2,在盒内最右端放一半径为r=0.1m的光滑金属球,质量为m2=1kg,现在盒的左端,给盒一个初速度v=3m/s(盒壁厚度,球与盒发生碰撞的时间和能量损失均忽略不计,g取10m/s2)求:金属盒从开始运动到最后静止所经历的时间?
如图甲所示,物块A、B的质量分别是 ="4.0" kg和="3.0" kg。用轻弹簧拴接,放在光滑的水平地面上,物块B右侧与竖直墙相接触。另有一物块C从t=0时以一定速度向右运动,在t="4" s时与物块A相碰,并立即与A粘在一起不再分开,物块C的v-t图像如图乙所示。求:
①物块C的质量 ?
②B离开墙后的运动过程中弹簧具有的最大弹性势能?
如图所示,在光滑的水平面上,质量为4m、长为L的木板右端紧靠竖直墙壁,与墙壁不粘连。质量为m的小滑块(可视为质点)以水平速度v0滑上木板左端,滑到木板右端时速度恰好为零。现小滑块以水平速度v滑上木板左端,滑到木板右端时与竖直墙壁发生弹性碰撞,以原速率弹回,刚好能够滑到木板左端而不从木板上落下,求的值。
用轻质弹簧相连的质量均为2kg的A、B两物块都以v=6m/s的速度在光滑的水平地面上运动,弹簧处于原长,质量为4kg的物块C静止于前方,如图所示,B与C碰撞后二者粘在一起运动,求:
①当弹簧的弹性势能最大时,物块A的速度多大?
②弹簧弹性势能的最大值是多少?
如图所示,在光滑水平面上放着一个质量M=0.3kg的木块(可视为质点),在木块正上方1m处有一个固定悬定点O,在悬点O和木块之间用一根长2m、不可伸长的轻绳连接。有一颗质量m=0.1kg的子弹以80m/s的速度水平射入木块并留在其中,之后木块绕O点在竖直平面内做圆周运动。求:
①木块以多大速度脱离水平地面?
②当木块到达最高点时对轻绳的拉力F为多少?
质量为M=2kg的木块固定在光滑的水平地面上,质量为m=0.04kg的子弹以速度v1=500m/s射入.射出时速度为v2=300m/s.如图所示,今将钉子拔掉,子弹射出后速度多大?
卢瑟福用α粒子轰击氮核发现质子。发现质子的核反应为:。已知氮核质量为mN=14.00753u,氧核的质量为mO=17.00454u,氦核质量mHe=4.00387u,质子(氢核)质量为mp=1.00815u。(已知:1uc2=931MeV,结果保留2位有效数字)求:
(1)这一核反应是吸收能量还是放出能量的反应?相应的能量变化为多少?
(2)若入射氦核以v0=3×107m/s的速度沿两核中心连线方向轰击静止氮核。反应生成的氧核和质子同方向运动,且速度大小之比为1:50。求氧核的速度大小。
)(如图,总质量为M=100kg的人和箱子,一起以v0=10m/s的速度在光滑水平的冰面上匀速滑行,前进中突然发现前方有一矮墙。为避免撞墙,人将质量m=40kg的箱子水平推向墙,箱子撞墙后以原速率反向弹回,之后人又接住箱子。求人推出箱子的速度至少多大才能在完成一次推接后避免撞墙。
)(在足够长的水平光滑直导轨上,静止放着三个质量均为m=1 kg的相同小球A、B、C,现让A球以v0=2 m/s的速度正对着B球运动,A、B两球碰撞后粘在一起,两球继续向右运动并与C球发生正碰,C球的最终速度vC=1 m/s。求:
(1)A、B两球与C球相碰前的共同速度多大?
(2)两次碰撞过程中一共损失了多少动能?
如图所示,光滑平台上有两个刚性小球A和B,质量分别为2m和3m,小球A以速度v0向右运动并与静止的小球B发生碰撞(碰撞过程不损失机械能),小球B飞出平台后经时间t刚好掉入装有沙子向左运动的小车中,小车与沙子的总质量为m,速度为2v0,小车行驶的路面近似看做是光滑的,求:
(1)碰撞后小球A和小球B的速度;
(2)小球B掉入小车后的速度。
如右图所示,光滑的水平面AB与半径为R="0.32" m的光滑竖直半圆轨道BCD在B点相切,D为轨道最高点.用轻质细线连接甲、乙两小球,中间夹一轻质弹簧,弹簧与甲、乙两球不拴接.甲球的质量为m1="0.1" kg,乙球的质量为m2="0.3" kg,甲、乙两球静止在光滑的水平面上。现固定甲球,烧断细线,乙球离开弹簧后进入半圆轨道恰好能通过D点。重力加速度g取10 m/s2,甲、乙两球可看作质点。
①试求细线烧断前弹簧的弹性势能;
②若甲球不固定,烧断细线,求乙球离开弹簧后进入半圆轨道能达到的最大高度;
如图所示,一质量为3 kg的平板车M放在光滑水平面上,在其右端放一质量为2 kg的小木块m,木块与平板车间动摩擦因数为μ=0.5,现给木块和平板车以大小相等、方向相反的初速度v0=3 m/s,(g取10 m/s2)求:
(1)运动过程中小木块不滑出平板车,平板车至少多长;
(2)从地面上看,小木块向左运动到离出发点最远处时,平板车向右运动位移大小.
)(一轻质弹簧竖直固定在地面上,上面连接一个质量为m1=1kg的物体,平衡时物体离地面0.9m,弹簧所具有的弹性势能为0.5J。现在在距物体m1正上方高为0.3m处有一个质量为m2=1kg的物体自由下落后与弹簧上物体m1碰撞立即合为一体,一起向下压缩弹簧。当弹簧压缩量最大时,弹簧长为0.6m。求(g取10m/s2):
①碰撞结束瞬间两物体的动能之和是多少?
②弹簧长为0.6m时弹簧的弹性势能大小?
试题篮
()