如图所示,质量为m的小物块(可视为质点)放在小车上,它们一起在两个竖直墙壁之间运动,小车质量为M,且M>m,设车与物体间的动摩擦因数为μ,车与水平间的摩擦不计,车与墙壁碰撞后速度反向而且大小不变,切碰撞时间极短,开始时车紧靠在左面墙壁处,物体位于车的最左端,车与物体以共同速度V0向右运动,若两墙壁之间的距离足够长,求:
(1)小车与墙壁第2次碰撞前(物体未从车上掉下)的速度.
(2)要是物体不从车上滑落,车长l应满足的条件. (需经过计算后得出)
如图所示,光滑水平面上,质量为2m的小球B连接着轻质弹簧,处于静止;质量为m的小球A以初速度v0向右匀速运动,接着逐渐压缩弹簧并使B运动,过一段时间,A与弹簧分离,设小球A、B与弹簧相互作用过程中无机械能损失,弹簧始终处于弹性限度以内。求当弹簧被压缩到最短时,弹簧的弹性势能E.
在相互垂直的匀强磁场和匀强电场中,有一倾角为θ的足够长的光滑绝缘斜面,磁感应强度为B,方向水平向外,电场强度为E,方向竖直向上,有一质量为带电荷量为的小滑块静止在斜面顶端时对斜面的正压力恰好为零,如图所示。
(1)如果迅速把电场方向转为竖直向下,求小滑块能在斜面上连续滑行的最远距离L和所用时间;
(2)如果在距A端L/4远处的C点放入一个相同质量但不带电的小物体,当滑块从A点由静止下滑到C点时两物体相碰并黏在一起.求此黏合体在斜面上还能再滑行多长时间和距离.
将带电量Q=0.3 C,质量m′=0.15 kg的滑块,放在小车的绝缘板的右端,小车的质量M=0.5 kg,滑块与绝缘板间的动摩擦因数μ=0.4,小车的绝缘板足够长,它们所在的空间存在着磁感应强度B="20" T的水平方向的匀强磁场,开始时小车静止在光滑水平面上,当一个摆长为L=1.25 m,摆球质量m=0.4 kg的单摆从水平位置由静止释放,摆到最低点时与小车相撞,如图所示,碰撞后摆球恰好静止,g取10 m/s2.求:
(1)摆球与小车碰撞过程中系统损失的机械能E是多少?
(2)碰撞后小车的最终速度是多少?
如图所示,三个质量均为m的弹性小球用两根长均为L的轻绳连成一条直线而静止在光滑水平面上.现给中间的小球B一个水平初速度v0,方向与绳垂直.小球相互碰撞时无机械能损失,轻绳不可伸长.求:
(1)当小球A、C第一次相碰时,小球B的速度.
(2)当三个小球再次处在同一直线上时,小球B的速度.
(3)运动过程中小球A的最大动能EKA和此时两根绳的夹角θ.
(4)当三个小球处在同一直线上时,绳中的拉力F的大小.
长为L的轻绳,一端用质量为m1的环套在水平光滑的固定横杆AB上,另一端连接一质量为m2的小球,开始时,提取小球并使绳子绷紧转到与横杆平行的位置(如图7)然后同时释放环和小球,当小球自由摆动到最低点时,小球受到绳子的弹力多大?
如图5一66所示一质量为m的小球,在B点从静止开始沿半球形容器内壁无摩擦地滑下,B点与容器底部A点的高度差为h,容器质量为M,内壁半径为R.求:
(1)当容器固定在水平桌面上,小球滑至底部A时,容器内壁对小球的作用力大小.
(2)当容器放置在光滑的水平桌面上,小球滑至底部A时,小球相对容器的速度大小.
如图32-9所示,一根很长的光滑水平轨道,它的一端接一光滑的圆弧形轨道,在水平轨道的上方有一足够长的光滑绝缘杆MN,杆上挂一铝环P,在弧形轨道上距水平轨道h处,无初速释放一磁铁A,A下滑至水平轨道时恰好沿P环的中心轴线运动,设A的质量为m,P的质量为M,求金属环P获得的最大速度和电热.
如图3所示,一质量为m的小球,在B点从静止开始沿半球形容器内壁无摩擦地滑下,B点与容器底部A点的高度差为h.容器质量为M,内壁半径为R,求:
(1)当容器固定在水平桌面上,小球滑至底部A时,容器内壁对小球的作用力大小.
(2)当容器放置在光滑的水平桌面上,小球滑至底部A时,小球相对容器的速度大小?容器此时对小球的作用力大小.
如图所示,甲、乙两小孩各坐一辆冰车在摩擦不计的冰面上相向运动,已知甲连同冰车的总质量M=30kg,乙连同冰车的总质量也是M=30kg,甲还推着一只质量m=15kg的箱子.甲、乙滑行的速度大小均为2m/s,为了避免相撞,在某时刻甲将箱子沿冰面推给乙,箱子滑到乙处时被乙接住.试求:①甲至少用多大的速度(相对于地面)将箱子推出,才可避免和乙相撞?②甲在推出时对箱子做了多少功?
(1)下列说法正确的是( )
A.放射性同位素的衰变快慢可以用人工方法控制 |
B.同一种物质的原子发光时,只能辐射几种不同频率的光 |
C.对核能的和平利用不仅能够利用重核裂变,也能利用轻核的聚变现象 |
D.光子射到金属表面,一定有光电子射出 |
(2)如图所示。在光滑的水平面上有一带有光滑平台的、质量为M=4 Kg(连同平台)的小车,平台与小车上表面的高度差为h=0.2m,在平台上用一质量为m=1Kg的小物块压缩一轻小的弹簧。开始时整个系统处于静止状态。某时刻释放小物体时弹簧将小车与物块弹开,最终物块落到与平台的右端P点的水平距离为L=0.8m的小车上表面的Q点。试求:
(1)物块离开平台右端P点时的对地速度大小。
(2)开始时弹簧贮存的弹性势能。
(13分)如图,重物M质量为1.0kg,以10m/s的初速度沿水平台面从A点向右运动,在B点与质量为0.20kg的静止小球m相碰撞,结果重物M落在地面上的D点。已知重物M与台面AB间的动摩擦因数为0.10,图中AB长18m,BC和CD均等于5.0m,取g=10m/s2。
求:(1)重物M与小球碰撞前瞬间速度大小;
(2)重物M与小球碰撞中所减少的动能;
(3)小球m落地点F与重物M落地点D之间的距离。
(12分)一列火车共有n节车厢且均停在有一定倾角的倾斜轨道上,各车厢与轨道接触面间的动摩擦因数均相同,倾斜轨道很长。各车厢间距相等,间距总长为a。若给第一节车厢一沿轨道斜面向下的初速度v,则其恰能沿倾斜轨道匀速运动,与第二节车厢碰后不分开,然后一起向第三节车厢运动,……依次直到第n节车厢.(碰撞时间极短可忽略)试求:
(1)火车的最后速度是多大?
(2)整个过程经历的时间是多长?
在光滑水平面上有一个静止的质量为M的木块,一颗质量为m的子弹以初速v0水平射入木块,且陷入木块的最大深度为d。设冲击过程中木块的运动位移为s,子弹所受阻力恒定。试证明:s<d。
试题篮
()