用竖直向上大小为30N的力F,将2kg的物体由沙坑表面静止抬升1m时撤去力F,经一段时间后,物体落入沙坑,测得落入沙坑的深度为20cm。若忽略空气阻力,g取10m/s2。则物体克服沙坑的阻力所做的功为( )
A.20J | B.24J | C.34J | D.54J |
一物体在外力的作用下从静止开始做直线运动,合外力方向不变,大小随时间的变化如图。设该物体在和时刻相对于出发点的位移分别是和,速度分别是和,合外力从开始至时刻做的功是,从至时刻做的功是,则: ( )
A. |
B. |
C. |
D. |
一打点计时器固定在斜面上某处,一小车拖着穿过打点计时器的纸带从斜面上滑下,如图(a)所示。用刻度尺测量斜面的高度与长度之比为1:4,小车质量为400g,图(b)是打出纸带的一段,相邻计数点间还有四个点未画出,已知打点计时器使用的交流电频率为50 Hz。由图(b)可知,打纸带上B点时小车的瞬时速度vB= m/s,打纸带上E点时小车的瞬时速度vE=_ m/s,打纸带上B点到E点过程中小车重力势能的减少量为_ J,此过程中小车克服阻力所做的功为 ___J。(g取10m/s2,保留两位有效数字)
物体在上升的过程中,下列说法正确的是( )
A.重力做正功,重力势能增加 | B.重力做正功,重力势能减小 |
C.重力做负功,重力势能增加 | D.重力做负功,重力势能减少 |
如图,表面光滑的固定斜面顶端安装一定滑轮,小物块A、B用轻绳连接并跨过滑轮(不计滑轮的质量和摩擦)。初始时刻,A、B处于同一高度并恰好处于静止状态。剪断轻绳后,A下落、B沿斜面下滑,则从剪断轻绳到物块着地,两物块( )
A.速率的变化量不同 B.机械能的变化量不同
C.重力势能的变化量相同 D.重力做功的平均功率相同
在光滑的水平地面上静止着一质量M=0.4kg的薄木板,一个质量m=0.2kg的木块(可视为质点)以v0=4m/s的速度,从木板左端滑上,一段时间后,又从木板上滑下(不计木块滑下时的机械能损失),两物体仍沿直线继续向前运动,从木块与木板刚刚分离开始计时,经时间t=3.0s,两物体之间的距离增加了s=3m,已知木块与木板的动摩擦因数μ=0.4,求薄木板的长度.
两电荷量分别为q1和q2的点电荷固定在x轴上的O、M两点,两电荷连线上各点电势φ随x变化的关系如图所示,其中C为ND段电势最低的点,则下列说法正确的是
A.q1、q2为等量异种电荷
B.C点的电场强度大小为零
C.C、D两点间场强方向沿x轴负方向
D.将一负点电荷从N点移到D点,电场力先做负功后做正功
人站在h高处的平台上,水平抛出一个质量为m的物体,物体落地时的速度为v,以地面为重力势能的零点,不计空气阻力,则有( )
A.人对小球做的功是 |
B.人对小球做的功是 |
C.小球落地时的机械能是 |
D.小球落地时的机械能是 |
一质量为2m的物体P静止于光滑水平地面上,其截面如图所示.图中ab为粗糙的水平面,长度为L;bc为一光滑斜面,斜面和水平面通过与ab和bc均相切的长度可忽略的光滑圆弧连接.现有一质量为m的木块以大小为v0的水平初速度从a点向左运动,在斜面上上升的最大高度为h,返回后在到达a点前与物体P相对静止.重力加速度为g.求:
(1)木块在ab段受到的摩擦力Ff;
(2)木块最后距a点的距离s.
如图所示,在光滑的水平面上有一质量为m=1kg的足够长的木板C,在C上放置有A、B两物体,A的质量mA=1kg,B的质量为mB=2kg.A、B之间锁定一被压缩了的轻弹簧,弹簧储存的弹性势能Ep=3J,现突然给A、B一瞬时冲量作用,使A、B同时获得v0=2m/s的初速度,且同时弹簧由于受到扰动而解除锁定,并在极短的时间内恢复原长,之后与A、B分离.已知A和C之间的摩擦因数为μ1=0.2,B、C之间的动摩擦因数为μ2=0.1,且滑动摩擦力略小于最大静摩擦力.求:
(1)弹簧与A、B分离的瞬间,A、B的速度分别是多大?
(2)已知在C第一次碰到右边的固定挡板之前,A、B和C已经达到了共同速度,求在到达共同速度之前A、B、C的加速度分别是多大及该过程中产生的内能为多少?
(3)已知C与挡板的碰撞的碰撞无机械能损失,求在第一次碰撞后到第二次碰撞前A在C上滑行的距离?
如图甲所示为某工厂将生产工件装车的流水线原理示意图。AB段是一光滑曲面,A距离水平段BC的高为H=1.25m,水平段BC使用水平传送带装置传送工件,已知BC长L=3m,传送带与工件(可视为质点)间的动摩擦因数为μ=0.4,皮带轮的半径为R=0.1m,其上部距车厢底面的高度h=0.45m。让质量m=1kg的工件由静止开始从A点下滑,经过B点的拐角处无机械能损失。通过调整皮带轮(不打滑)的转动角速度ω可使工件经C点抛出后落在固定车厢中的不同位置,取g=10m/s2。求:
(1)当皮带轮静止时,工件运动到点C时的速度为多大?
(2)皮带轮以ω1=20rad/s逆时针方向匀速转动,在工件运动到C点的过程中因摩擦而产生的内能是多少?
(3)设工件在车厢底部的落点到C点的水平距离为s,在图乙中定量画出s随皮带轮角速度ω变化关系的s-ω图象。(规定皮带轮顺时针方向转动时ω取正值,该问不需要写出计算过程)
如图所示,在竖直的绝缘平面上固定一光滑金属导轨abcdef, ab∥cd∥ef, ∠abc="∠def=" 900,ab="bc=de=ef=L," cd=3L。一根质量为m的导体棒MN通过绝缘轻绳在电机的牵引作用下,以恒定速度v从导轨的底端bc开始竖直向上运动,到达导轨的顶端de,此过程MN始终保持水平。已知MN足够长,且与轨道接触良好。金属导轨abcdef电阻不计,导体棒MN单位长度的电阻为r,整个平面处在垂直平面指向纸内、磁感应强度为B的匀强磁场中。求:
(1) 导体棒运动到a位置时流过回路的电流大小
(2) 导体棒从bc运动到de过程回路中通过的电荷量
(3) 将导体棒从bc拉到de的过程中电机对外做的功
如图所示,相距为d的两水平线和分别是水平向里的匀强磁场的边界,磁场的磁感应强度为B,正方形线框abcd边长为L(L<d)、质量为m,电阻为R。将线框在磁场上方高h处由静止释放,ab边刚进入磁场和穿出磁场时的速度都为。在线框全部穿过磁场的过程中
A.感应电流所做功为 | B.感应电流所做功为 |
C.线框产生的热量为 | D.线框最小速度一定为 |
如图所示,水平固定的平行金属导轨(电阻不计),间距为l,置于磁感强度为B、方向垂直导轨所在平面的匀强磁场中,导轨左侧接有一阻值为R的电阻和电容为C的电容器。一根与导轨接触良好的金属导体棒垂直导轨放置,导体棒的质量为m,阻值为r。导体棒在平行于轨道平面且与导体棒垂直的恒力F的作用下由静止开始向右运动。
(1)若开关S与电阻相连接,当位移为x时,导体棒的速度为v。求此过程中电阻R上产生的热量以及F作用的时间?
(2)若开关S与电容器相连接,求经过时间t导体棒上产生的热量是多少?(电容器未被击穿)
根据玻尔理论,电子绕氢原子核运动可以看作是仅在库仑引力作用下的匀速圆周运动,已知电子的电荷量为e,质量为m,电子在第1轨道运动的半径为r1,静电力常量为k。
(1)电子绕氢原子核做圆周运动时,可等效为环形电流,试计算电子绕氢原子核在第1轨道上做圆周运动的周期及形成的等效电流的大小;
(2)氢原子在不同的能量状态,对应着电子在不同的轨道上绕核做匀速圆周运动,电子做圆周运动的轨道半径满足rn=n2r1,其中n为量子数,即轨道序号,rn为电子处于第n轨道时的轨道半径。电子在第n轨道运动时氢原子的能量En为电子动能与“电子-原子核”这个系统电势能的总和。理论证明,系统的电势能Ep和电子绕氢原子核做圆周运动的半径r存在关系:Ep=-k(以无穷远为电势能零点)。请根据以上条件完成下面的问题。
①试证明电子在第n轨道运动时氢原子的能量En和电子在第1轨道运动时氢原子的能量E1满足关系式
②假设氢原子甲核外做圆周运动的电子从第2轨道跃迁到第1轨道的过程中所释放的能量,恰好被量子数n=4的氢原子乙吸收并使其电离,即其核外在第4轨道做圆周运动的电子脱离氢原子核的作用范围。不考虑电离前后原子核的动能改变,试求氢原子乙电离后电子的动能。
试题篮
()