图甲是回旋加速器的工作原理图。D1和D2是两个中空的半圆金属盒,它们之间有一定的电势差,A处的粒子源产生的带电粒子,在两盒之间被电场加速。两半圆盒处于与盒面垂直的匀强磁场中,所以粒子在半圆盒中做匀速圆周运动。若带电粒子在磁场中运动的动能Ek随时间t的变化规律如图乙所示,不计带电粒子在电场中的加速时间,不考虑由相对论效应带来的影响,下列判断正确的是
A.在Ek-t图中应该有tn+1- tn =tn-tn-1 |
B.在Ek-t图中应该有tn+1- tn <tn-tn-1 |
C.在Ek-t图中应该有En+1- En =En-En-1 |
D.在Ek-t图中应该有En+1-En <En-En-1 |
回旋加速器在核科学、核技术、核医学等高新技术领域得到了广泛应用,有力地推动了现代科学技术的发展。回旋加速器的原理如图所示,D1和D2是两个正对的中空半圆金属盒,它们的半径均为R,且分别接在电压一定的交流电源两端,可在两金属盒之间的狭缝处形成变化的加速电场,两金属盒处于与盒面垂直、磁感应强度为B的匀强磁场中。A点处的粒子源能不断产生带电粒子,它们在两盒之间被电场加速后在金属盒内的磁场中做匀速圆周运动。调节交流电源的频率,使得每当带电粒子运动到两金属盒之间的狭缝边缘时恰好改变加速电场的方向,从而保证带电粒子能在两金属盒之间狭缝处总被加速,且最终都能沿位于D2盒边缘的C口射出。该回旋加速器可将原来静止的α粒子(氦的原子核)加速到最大速率v,使它获得的最大动能为Ek。若带电粒子在A点的初速度、所受重力、通过狭缝的时间及C口的口径大小均可忽略不计,且不考虑相对论效应,则用该回旋加速器( )
A.能使原来静止的质子获得的最大速率为v |
B.能使原来静止的质子获得的动能为Ek |
C.加速质子的交流电场频率与加速α粒子的交流电场频率之比为1:1 |
D.加速质子的总次数与加速α粒子总次数之比为2:1 |
回旋加速器是加速带电粒子的装置,其主体部分是两个D形金属盒,两金属盒处在垂直于盒底的匀强磁场中,与高频交流电源相连接后,使粒子每次经过两盒间的狭缝时都能得到加速,如图所示。现要增大带电粒子从回旋加速器射出时的动能,下列方法可行的是
A.仅减小磁场的磁感应强度 |
B.仅减小狭缝间的距离 |
C.仅增大高频交流电压 |
D.仅增大金属盒的半径 |
如图是质谱仪的工作原理示意图。带电粒子被加速电场加速后,进入速度选择器。速度选择器内相互正交的匀强磁场和匀强电场的强度分别为B和E。平板S上有可让粒子通过的狭缝P和记录粒子位置的胶片A1A2。下列表述正确的是( )
A.只有带正电的粒子能通过速度选择器沿直线进入狭缝P |
B.速度选择器中的磁场方向垂直纸面向里 |
C.粒子打在胶片上的位置越靠近狭缝P,粒子的比荷越大 |
D.能通过的狭缝P的带电粒子的速率等于 |
如图是质谱仪的工作原理示意图.带电粒子被加速电场加速后,进入速度选择器。速度选择器内匀强磁场和匀强电场的方向相互垂直,磁感应强度为B,电场强度为E,平板S上有可让粒子通过的狭缝P和记录粒子位置的胶片A1A2,平板S下方有磁感应强度为B0的匀强磁场,下列表述正确的是
A.质谱仪是分析同位素的重要工具 |
B.速度选择器中的磁场方向垂直纸面向内 |
C.能通过狭缝P的带电粒子的速率等于 |
D.粒子打在胶片上的位置越靠近狭缝P,粒子的比荷()越小 |
用回旋加速器加速α粒子和质子时,若磁场相同,则加在两个D形盒间的交变电压的频率应不同,其频率之比为( )
A.1:1 | B.1:2 | C.2:1 | D.1:3 |
关于回旋加速器,下述说法中不正确是
A.电场的作用是使带电粒子加速,动能增大 |
B.电场和磁场交替使带电粒子加速 |
C.磁场的作用是使带电粒子在磁场中回旋,获得多次被加速的机会 |
D.D形盒的半径越大,射出的带电粒子获得的能量越多 |
质谱仪是一种测定带电粒子质量或分析同位素的重要设备,它的构造原理如图所示.离子源S产生的各种不同正离子束(速度可视为零),经MN间的加速电压U加速后从小孔S1垂直于磁感线进入匀强磁场,运转半周后到达照相底片上的P点.设P到S1的距离为x,则 ( )
A.若离子束是同位素,则x越大对应的离子质量越小 |
B.若离子束是同位素,则x越大对应的离子质量越大 |
C.只要x相同,对应的离子质量一定相同 |
D.只要x相同,对应的离子的比荷一定相等 |
如图是质谱仪的工作原理示意图.带电粒子被加速电场加速后,进入速度选择器.速度选择器内相互正交的匀强磁场和匀强电场的强度分别为B和E.平板S上有可让粒子通过的狭缝P和记录粒子位置的胶片A1A2.平板S下方有强度为B0的匀强磁场.下列表述正确的是
A.质谱仪是分析同位素的重要工具 |
B.速度选择器中的磁场方向垂直纸面向外 |
C.能通过的狭缝P的带电粒子的速率等于E/B |
D.粒子打在胶片上的位置越靠近狭缝P,粒子的比荷越小 |
1932年劳伦斯制成了世界上第一台回旋加速器,其原理如图所示,这台加速器由两个D形盒D1、D2构成,它们之间留有窄缝,在窄缝间有电势差,形成电场,离子在此窄缝中被加速,进入磁场后做匀速圆周运动,回到窄缝时电场方向变换离子又被加速,依次循环....。下列说法正确的是
A.离子在加速器D形盒D1中运动的周期比在D2中的大 |
B.在两个D形盒D1、D2之间加有周期性变化的电场 |
C.离子从电场中获得能量 |
D.离子从磁场中获得能量 |
1930年劳伦斯制成了世界上第一台回旋加速器,其原理如图所示,它的核心部分是两个D形金属盒,两盒相距很近,分别和交变电源相连接,两盒放在匀强磁场中,磁场方向垂直于盒底面,某一带电粒子在磁场中做圆周运动,通过两盒间的窄缝时反复被加速,当达到最大圆周半径时通过特殊装置被引出。下列说法正确的是
A.带电粒子在回旋加速器中从磁场中获得能量 |
B.带电粒子在回旋加速器中从电场中获得能量 |
C.高频交变电源的电压越大,带电粒子从出口被引出时获得的动能越大 |
D.匀强磁场的磁感应强度与带电粒子从出口被引出时获得的动能无关 |
中国科学院院士谢家麟是加速器物理学家,于20世纪60年代初领导完成一台可向高能发展的电子直线加速器、大功率速调管和电子回旋加速器等科研项目,如图为电子在回旋加速器中加速的示意图,回旋加速器D形盒半径为R,用来加速质量为m、带电荷量为e的电子,使电子由静止加速到能量为E后,由A孔射出,下列说法正确的是( )
A.电子被加速后,运动速率和运动半径都会增加,它的运动周期会增加 |
B.电场是用来加速的,磁场是用来回旋的,电子最终的能量应与磁场无关,并且加速电压越高,最终能量越高 |
C.所加磁场的磁感应强度大小一定为B= |
D.若匀强磁场的磁感应强度为B,不计通过缝隙的时间,电子在回旋加速器中运动的时间为 |
回旋加速器是用来加速带电粒子的装置,如下图所示,它的核心部分是两个D形金属盒,两盒相距很近,分别和高频交流电源相连接,两盒间的窄缝中形成匀强电场,使带电粒子每次通过窄缝都得到加速.两盒放在匀强磁场中,磁场方向垂直于盒底面,带电粒子在磁场中做圆周运动,通过两盒间的窄缝时反复被加速,直到达到最大圆周半径时通过特殊装置被引出.如果用同一回旋加速器分别加速氚核()和α粒子(),比较它们所加的高频交流电源的周期和获得的最大动能的大小,有( )
A.加速氚核的交流电源的周期较大,氚核获得的最大动能也较大 |
B.加速氚核的匀强电场的电势差较大,氚核获得的最大动能较大 |
C.匀强磁场的磁感应强度较大,氚核获得的最大动能也较大 |
D.D形金属盒的半径较大,氚核获得的最大动能较大 |
用如图所示的回旋加速器来加速质子,为了使质子获得的动能增加为原来的4倍,可采用下列哪种方法( )
A.将其磁感应强度增大为原来的2倍 |
B.将其磁感应强度增大为原来的4倍 |
C.将D形金属盒的半径增大为原来的4倍 |
D.将两D形金属盒间的加速电压增大为原来的4倍 |
图甲是回旋加速器的示意图,其核心部分是两个“D”形金属盒,在加速带电粒子时,两金属盒置于匀强磁场中,并分别与高频电源两极相连。带电粒子在磁场中运动的动能Ek随时间t的变化规律如图乙所示,若忽略带电粒子在电场中的加速时间,则下列说法正确的是
A.在Ek—t图中应有(t2-t1)>(t3-t2)>(t4-t3)>……(tn-tn-1)
B.高频电源的变化周期应该等于tn-tn-1
C.要使粒子获得的最大动能增大,可以增大“D”形盒的半径
D.在磁感应强度B、“D”形盒半径R、粒子的质量m及其电荷量q不变的情况下,粒子的加速次数越多,粒子的最大动能一定越大
试题篮
()