一矩形线圈在匀强磁场中绕垂直磁场方向的轴匀速转动,当线圈通过中性面时,以下说法错误的是
A.通过线圈的磁通量变化率达到最大值 |
B.通过线圈的磁通量达到最大值 |
C.线圈平面与磁感线方向垂直 |
D.线圈中的感应电动势为零 |
如图甲所示,单匝线圈两端A、B与一理想电压表相连,线圈内有一垂直纸面向里的磁场,线圈中的磁通量变化规律如图乙所示.下列说法正确的是
A.0~0.1s内磁通量的变化量为0.15Wb
B.电压表读数为0.5V
C.电压表“+”接线柱接A端
D.B端比A端的电势高
如图所示,在垂直于纸面的范围足够大的匀强磁场中,有一个矩形闭合线框abcd,线框平面与磁场垂直,是线框的对称轴,下列可使通过线框的磁通量发生变化的方式是
A.向左或向右平动 | B.向上或向心平动 |
C.绕转动 | D.平行于纸面向里运动 |
如图所示,闭合金属圆环下落过程中,穿过竖直放置的条形磁铁正中间位置时,下列说法正确的是
A.金属圆环的加速度等于g |
B.穿过金属圆环的磁通量为零 |
C.穿过金属圆环的磁通量变化率为零 |
D.金属圆环沿半径方向有收缩的趋势 |
如图所示,A、B是两根互相平行、固定的长直通电导线,二者电流大小和方向都相同。一个矩形闭合金属线圈abcd与A、B在同一平面内,并且ab边保持与通电导线平行。线圈从图中的位置1匀速向左移动,经过位置2,最后到位置3,其中位置2恰在A、B的正中间。下面的说法中正确的是( )。
A.在位置2这一时刻,穿过线圈的磁通量为零
B.在位置2这一时刻,穿过线圈的磁通量的变化率为零
C.在位置1到位置3的整个过程中,线圈内感应电流的方向发生了变化
D.在位置1到位置3的整个过程中,线圈受到的磁场力的方向保持不变
一个面积S=4×10﹣2m2、匝数n=100匝的线圈,放在匀强磁场中,磁场方向垂直于线圈平面,磁感应强度B随时间t变化的规律如图所示,则下列判断正确的是( )
A.在开始的2s内穿过线圈的磁通量变化率等于﹣0.08Wb/s |
B.在开始的2s内穿过线圈的磁通量的变化量等于零 |
C.在开始的2s内线圈中产生的感应电动势等于﹣0.08V |
D.在第3s末线圈中的感应电动势等于零 |
一个匝数为200匝,面积为20cm2的圆线圈,放在匀强磁场中,磁场的方向与线圈平面成30°角,磁感应强度在0.05s内由0.1T均匀增加到0.5T。在此过程中,磁通量的变化量是 Wb,线圈中感应电动势的大小为 V。
在匀强磁场中匀速转动的矩形线圈的周期为T,转轴垂直于磁场方向,线圈电阻为2Ω,从线圈平面与磁场方向平行时开始计时,线圈转过了60°的感应电流为1A,那么
A.线圈中感应电流的有效值为2A |
B.线圈消耗的电功率为4W |
C.任意时刻线圈中的感应电动势为 |
D.任意时刻穿过线圈的磁通量为 |
如图所示,是用来做电磁感应实验装置的示意图,当闭合开关S时,发现电流表的指针向左偏转一下后,又回到中央位置.现继续进行实验
(1)把原线圈插入副线圈的过程中,电流表的指针将 .
(2)把原线圈插入副线圈后电流表的指针将
(3)原、副线圈保持不动,把变阻器滑动片P向右移动过程中,电流表的指针将
如图所示,两匀强磁场的磁感应强度 和 大小相等、方向相反。金属圆环的直径与两磁场的边界重合。下列变化会在环中产生顺时针方向感应电流的是
A. |
同时增大 减小 |
B. |
同时减小 增大 |
C. |
同时以相同的变化率增大 和 |
D. |
同时以相同的变化率减小 和 |
一般在微型控制电路中,由于电子元件体积很小,直接与电源连接会影响电路精准度,所以采用“磁”生“电”的方法来提供大小不同的电流。在某原件工作时,其中一个面积为S=4×10-4m2,匝数为10匝,每匝电阻为0.02Ω的线圈放在匀强磁场中,磁场方向垂直于线圈平面,磁感应强度大小B随时间t变化的规律如图1所示。
(1)求在开始的2s内,穿过线圈的磁通量变化量;
(2)求在开始的3s内,线圈产生的热量;
(3)小勇同学做了如图2的实验:将并排在一起的两根电话线分开,在其中一根电话线旁边铺设一条两端分别与耳机连接的导线,这条导线与电话线是绝缘的,你认为耳机中会有电信号吗?写出你的观点,并说明理由。
如图所示,两个同心放置的共面金属圆环a和b,一条形磁铁穿过圆心且与环面垂直,则穿过两环的磁通量φa、φb的大小关系为( )
A.φa>φb | B.φa<φb | C.φa=φb | D.无法比较 |
关于感应电动势的大小,下列说法正确的是( )
A.穿过闭合回路的磁通量越大,则感应电动势越大 |
B.穿过闭合回路的磁通量的变化越大,则感应电动势越大 |
C.穿过闭合回路的磁通量的变化越快,则感应电动势越大 |
D.闭合回路的面积越大,则感应电动势越大 |
试题篮
()