如图12-3-14所示,足够长的平行光滑导轨与水平面成θ角,匀强磁场的方向竖直向上,一根质量为m的金属棒ab与导轨接触良好,沿导轨匀速下滑且保持水平,不计导轨和金属棒的电阻,则在金属棒下滑的一段时间内( )
图12-3-14
A.棒中的感应电流方向由b到a |
B.棒所受到的安培力方向沿斜面向上 |
C.棒的机械能减少量等于电阻R上产生的热量 |
D.棒的重力所做的功等于其重力势能的减少量与电阻R上产生的热量之和 |
两根平行的长直导轨,电阻不计,导体棒ab、cd跨在导轨上,如图所示.ab的电阻R大于cd的电阻r,当cd在外力F1作用下匀速向右滑动时,ab在外力F2的作用下保持静止,不计各处摩擦.则F1、F2大小的关系,ab及cd两点间电压Uab、Ucd的关系正确的是( )
A.F1>F2,Uab>Ucd | B.F1<F2,Uab=Ucd |
C.F1=F2,Uab>Ucd | D.F1=F2,Uab=Ucd |
如图所示,固定于水平绝缘面上的平行金属导轨不光滑,垂直于导轨平面有一匀强磁场.质量为m的金属棒cd垂直放在导轨上,除R和cd的电阻r外,其余电阻不计.现用水平恒力F作用于cd,使cd由静止开始向右滑动的过程中,下列说法正确的是( )
A.水平恒力F对cd棒做的功等于电路中产生的电能 |
B.只有在cd棒做匀速运动时,F对cd棒做的功才等于电路中产生的电能 |
C.无论cd棒做何种运动,它克服磁场力所做的功一定等于电路中产生的电能 |
D.R两端的电压始终等于cd棒中感应电动势的值 |
如图所示,水平光滑的平行金属导轨,左端接有电阻R,匀强磁场B竖直向下分布在导轨所在的空间内,质量一定的金属棒PQ垂直导轨放置。今使棒以一定的初速度v0向右运动,当其通过位置a、b时,速率分别为va、vb,到位置c时棒刚好静止。设导轨与棒的电阻均不计,a、b与b、c的间距相等,则金属棒在由a→b和b→c的两个过程中( )
A.棒运动的加速度相等 | B.通过棒截面的电量相等 |
C.回路中产生的电能Eab=3Ebc | D.棒通过a、b两位置时va>2vb |
一匀强磁场,磁场方向垂直纸面,规定向里的方向为正,在磁场中有一细金属圆环,线圈平面位于纸面内,如图3-5-17(a)所示.现令磁感应强度B随时间t变化,先按图3-5-17(b)中所示的Oa图线变化,后来又按图线bc和cd变化.令E1、E2、E3分别表示这三段变化过程中感应电动势的大小,I1、I2、I3分别表示对应的感应电流,则( )
图3-5-17
A.E1>E2,I1沿逆时针方向,I2沿顺时针方向 | B.E1<E2,I1沿逆时针方向,I2沿顺时针方向 |
C.E1<E2,I2沿顺时针方向,I3沿逆时针方向 | D.E2=E3,I2沿顺时针方向,I3沿顺时针方向 |
如图3-5-16所示,用一根均匀导线做成的矩形导线框 abcd 放在匀强磁场中,线框平面与磁场方向垂直,ad、bc 边上跨放着均匀直导线 ef,各导线的电阻不可忽略.当将导线 ef 从 ab 附近匀速向右移动到 cd 附近的过程中( )
图3-5-16
A.ef 受到的磁场力方向向右 | B.ef 两端的电压始终不变 |
C.ef 中的电流先变小后变大 | D.ef 中的电流先变大后变小 |
在匀强磁场中,有一接有电容器的回路,如图10所示.已知C="30" μF,l1="5" cm,l2="8" cm,磁场以5×10-2 T/s的速度增强.则 ( )
图10
A.电容器上板带正电,带电荷量2×10-9 C |
B.电容器上板带正电,带电荷量6×10-9 C |
C.电容器上板带负电,带电荷量4×10-9 C |
D.电容器上板带负电,带电荷量6×10-9 C |
在匀强磁场中放一电阻不计的平行金属导轨,导轨跟大线圈M相接如图9所示,导轨上放入一根导线ab,磁感线垂直于导轨所在平面.要使M所包围的小闭合线圈N产生顺时针方向的感应电流,则导线的运动情况可能是( )
图9
A.匀速向右运动 |
B.加速向右运动 |
C.减速向右运动 |
D.减速向左运动 |
.如图8所示,闭合金属环从高h的光滑曲面滚下,又沿曲面的另一侧上升,整个装置均处在如图8所示的磁场中.设闭合金属环的初速度为零,阻力不计,则( )
图8
A.若是匀强磁场,环滚上的高度小于h |
B.若是匀强磁场,环滚上的高度等于h |
C.若是非匀强磁场,环滚上的高度等于h |
D.若是非匀强磁场,环滚上的高度小于h |
有两个完全相同的灵敏电流计,如图5连接,若将A表指针向左拨动,则B表指针将( )
图5
A.向左偏转 |
B.向右偏转 |
C.保持不动 |
D.无法确定 |
一直升机停在南半球的地磁极上空.该处地磁场的方向竖直向上,磁感应强度为B.直升机螺旋桨叶片的长度为l,螺旋桨转动的频率为f,顺着地磁场的方向看螺旋桨,螺旋桨按顺时针方向转动.螺旋桨叶片的近轴端为a,远轴端为b,如图13所示.如果忽略a到转轴中心线的距离,用E表示每个叶片中的感应电动势,则( )
图13
A.E=πfl2B,且a点电势低于b点电势
B.E=2πfl2B,且a点电势低于b点电势
C.E=πfl2B,且a点电势高于b点电势
D.E=2πfl2B,且a点电势高于b点电势
图11中,虚线右侧存在垂直纸面指向纸内的匀强磁场,半圆形闭合线框与纸面共面,绕过圆心O且垂直于纸面的轴匀速转动.线框中的感应电流以逆时针方向为正方向,那么图12中哪个图能正确描述线框从图示位置开始转动一周的过程中,线框中感应电流随时间变化的情况( )
图11
图12
在物理实验中,要测定磁场的磁感应强度,可用一个探测线圈与一个冲击电流计(可测定通过电路的电荷量)串联后进行测量(如图7).若已测得匀强磁场的磁感应强度为B,又已知探测线圈的匝数为n,面积为S,线圈与冲击电流计组成的回路电阻为R.实验开始时线圈平面与磁场垂直,现把探测线圈翻转180°,则此过程中冲击电流计测出通过线圈的电荷量应为( )
图7
如图6甲所示,长直导线与闭合金属线框位于同一平面内,长直导线中的电流i随时间t的变化关系如图6乙所示.在0~T/2时间内,直导线中电流向上,则在T/2~T时间内,线框中感应电流的方向与所受安培力情况是( )
图6
A.感应电流方向为顺时针,线框受安培力的合力方向向左 |
B.感应电流方向为逆时针,线框受安培力的合力方向向右 |
C.感应电流方向为顺时针,线框受安培力的合力方向向右 |
D.感应电流方向为逆时针,线框受安培力的合力方向向左 |
试题篮
()