桌面上放着一个单匝线圈,线圈中心上方一定高度有一竖直放置的条形磁铁,此时线圈内的磁通量为0.04Wb;把条形磁铁竖放在线圈内的桌面上时,线圈内的磁通量为0.12Wb;当把条形磁铁从该位置在0.1s内放到线圈内的桌面上的过程中,产生的感应电动势大小?
质量为m=0.02kg的通电细杆ab长L=0.3m,置于倾角为θ=37°的平行放置的导轨上且与导轨垂直。导轨的宽度d=0.2m,杆ab与导轨间的动摩擦因数μ=0.4,磁感应强度B=2T的匀强磁场与导轨平面垂直且方向向下,如图所示。现调节滑动变阻器的触头,求:为了使杆ab静止不动,通过ab杆的电流范围是多少?
矩形线框abcd的边长分别为l1、l2,可绕它的一条对称轴OO′转动,线框电阻为R,转动角速度为ω。匀强磁场的磁感应强度为B,方向与OO′垂直,初位置时线圈平面与B平行,如图所示。
(1)以图示位置为零时刻,写出现框中感应电动势的瞬时值表达式。
(2)由图示位置转过90°的过程中,通过线框截面的电荷量是多少?
如下图所示,两光滑金属导轨,间距d=0.2m,在桌面上的部分是水平的,处在磁感应强度B=0.1T、方向竖直向下的有界磁场中,电阻R=3Ω,桌面高H=0.8m,金属杆ab质量m=0.2kg、电阻r=1Ω,在导轨上距桌面h=0.2m高处由静止释放,落地点距桌面左边缘的水平距离s=0.4m,g=10m/s2,求:
(1)金属杆刚进入磁场时,R上的电流大小和方向;
(2)整个过程中R上放出的热量.
如图所示,竖直平面内有足够长的金属导轨,轨距0.2m,金属导体棒ab可在导轨上无摩擦地上下滑动,ab的电阻为0.4Ω,导轨电阻不计,导体棒ab的质量为0.4g,垂直纸面向里的匀强磁场的磁应强度为0.2T,且磁场区域足够大,当ab导体棒自由下落0.4s时,突然接通电键K,求:
(1)K接通的瞬间,ab导体棒的加速度;
(2)ab导体棒匀速下落的速度是多少?(g取10m/s2)
在范围足够大,方向竖直向下的匀强磁场中,B=0.2 T,有一水平放置的光滑框架,宽度为L=0.4 m,如图所示,框架上放置一质量为0.05 kg,电阻为1 Ω的金属杆cd,框架电阻不计.若cd杆以恒定加速度a=2 m/s2,由静止开始做匀变速运动,则
(1)在5 s内平均感应电动势是多少?
(2)第5 s末,回路中的电流多大?
(3)第5 s末,作用在cd杆上的水平外力多大?
如图所示,足够长的平行光滑金属导轨水平放置,宽度一端连接的电阻。导线所在空间存在竖直向下的匀强磁场,磁感应强度。导体棒MN放在导轨上,其长度恰好等于导轨间距,与导轨接触良好,导轨和导体棒的电阻均可忽略不计。在平行于导轨的拉力作用下,导体棒沿导轨向右匀速运动,速度。求:
(1)感应电动势E和感应电流;
(2)在0.1时间内,拉力的冲量的大小;
(3)若将MN换为电阻的导体棒,其他条件不变,求导体棒两端的电压。
如图所示,在水平面内固定一光滑“U”型导轨,导轨间距L=1m,整个装置处在竖直向下的匀强磁场中,磁感强度B=0.5T.一导体棒以v0=2m/s的速度向右切割匀强磁场,导体棒在回路中的电阻r=0.3Ω,定值电阻R=0.2Ω,其余电阻忽略不计.求:
(1)回路中产生的感应电动势;
(2)R上消耗的电功率;
(3)若在导体棒上施加一外力F,使导体棒保持匀速直线运动,求力F的大小和方向.
如图甲所示,长、宽分别为L1=0.1m、L2=0.2m的矩形金属线框位于竖直平面内,其匝数为100匝,总电阻为1Ω,可绕其竖直中心轴O1O2转动.线框的两个末端分别与两个彼此绝缘的铜环C、D(集流环)焊接在一起,并通过电刷和定值电阻R=9Ω相连.线框所在空间有水平向右均匀分布的磁场,磁感应强度B的大小随时间t的变化关系如图乙所示,其中B0=5×10﹣3 T、B1=1×10﹣2 T和t1=2×10﹣3S.在0~t1的时间内,线框保持静止,且线框平面和磁场垂直;t1时刻后线框在外力的驱动下开始绕其竖直中心轴以角速度ω=200rad/s匀速转动.求:
(1)0~t1时间内通过电阻R的电流大小;
(2)线框匀速转动后,在转动一周的过程中电流通过电阻R产生的热量;
(3)线框匀速转动后,从图甲所示位置转过90°的过程中,通过电阻R的电荷量.
如图所示,线圈的面积是0.05 m2,共100匝,线圈电阻为r =" 1" Ω,外接电阻R =" 9" Ω,匀强磁场的磁感应强度B =T,当线圈以300 r/min的转速匀速旋转时,求:
(1)若从中性面开始计时,写出线圈磁通量变化率的瞬时表达式.
(2)电路中电压表和电流表的示数各是多少?
(3)由图示位置转过60°角的过程产生的平均感应电动势为多少?
如图(a)所示,一边长L=2.5m,质量m=0.5kg的正方形金属线框,放在光滑绝缘的水平面上,整个装置放在方向竖直向上、磁感应强度B=1.6T的匀强磁场中,它的一边与磁场的边界MN重合。在水平力F作用下由静止开始向左运动,经过5s线框被拉出磁场。测得金属线框中的电流随时间变化的图像如图(b)所示,在金属线框被拉出的过程中,
(1)求通过线框导线截面的电量及线框的电阻;
(2)写出水平力F随时间t变化的表达式;
(3)已知在这5s内力F做功3.58J,那么此过程中,线框产生的焦耳热为是多少?
如图所示,两根足够长的光滑金属导轨MN、PQ间距为l=0.5m,其电阻不计,两导轨及其构成的平面均与水平面成30°角.完全相同的两金属棒ab、cd分别垂直导轨放置,每棒两端都与导轨始终有良好接触,已知两棒的质量均为0.02kg,电阻均为R=0.1Ω,整个装置处在垂直于导轨平面向上的匀强磁场中,磁感应强度为B=0.2T,棒ab在平行于导轨向上的力F作用下,沿导轨向上匀速运动,而棒cd恰好能保持静止.取g="10m/s" 2,问:
(1)通过cd棒的电流I是多少,方向如何?
(2)棒ab受到的力F多大?
(3)当电流通过电路产生的焦耳热为Q=0.2J时,力F做的功W是多少?
如图所示,金属导轨MNC和PQD,MN与PQ平行且间距为L,所在平面与水平面夹角为α,N、Q连线与MN垂直,M、P间接有阻值为R的电阻;光滑直导轨NC和QD在同一水平面内,与NQ的夹角都为锐角θ.均匀金属棒ab和ef质量均为m,长均为L,ab棒初始位置在水平导轨上与NQ重合;ef棒垂直放在倾斜导轨上,与导轨间的动摩擦因数为μ(μ较小).由导轨上的小立柱1和2阻挡而静止.空间有方向竖直的匀强磁场(图中未画出).两金属棒与导轨保持良好接触,不计所有导轨和ab棒的电阻,ef棒的阻值为R,最大静摩擦力与滑动摩擦力大小相等,忽略感应电流产生的磁场,重力加速度为g.
(1)若磁感应强度大小为B,给ab棒一个垂直于NQ、水平向右的速度v1,在水平导轨上沿运动方向滑行一段距离后停止,ef棒始终静止,求此过程ef棒上产生的热量;
(2)在(1)问过程中,ab棒滑行距离为d,求通过ab棒某横截面的电量;
(3)若ab棒以垂直于NQ的速度v2在水平导轨上向右匀速运动,并在NQ位置时取走小立柱1和2,且运动过程中ef棒始终静止.求此状态下最强磁场的磁感应强度及此磁场下ab棒运动的最大距离.(提示:)
如图所示,一平面框架与水平面成37°角,宽L=0.4m,上、下两端各有一个电阻R0=1Ω,框架的其他部分电阻不计,框架足够长.垂直于框平面的方向存在向上的匀强磁场,磁感应强度B=2T。ab为金属杆,其长度为L=0.4m,质量m=0.8kg,电阻r=0.5Ω,金属杆与框架的动摩擦因数μ=0.5。金属杆由静止开始下滑,直到速度达到最大的过程中,金属杆克服磁场力所做的功为W=1.5J。已知sin37°=0.6,cos37°=0.8;g取10m/s2.求:
(1)ab杆达到的最大速度v.
(2)ab杆从开始到速度最大的过程中沿斜面下滑的距离.
(3)在该过程中通过ab的电荷量.
如图所示,水平面上两平行光滑金属导轨间距为L,左端用导线连接阻值为R的电阻.在间距为d的虚线MN、PQ之间,存在方向垂直导轨平面向下的磁场,磁感应强度大小只随着与MN的距离变化而变化.质量为m、电阻为r的导体棒ab垂直导轨放置,在大小为F的水平恒力作用下由静止开始向右运动,到达虚线MN时的速度为v0.此后恰能以加速度a在磁场中做匀加速运动.导轨电阻不计,始终与导体棒电接触良好.求:
(1)导体棒开始运动的位置到MN的距离x;
(2)磁场左边缘MN处的磁感应强度大小B;
(3)导体棒通过磁场区域过程中,电阻R上产生的焦耳热QR.
试题篮
()