如图所示,两根等高的四分之一光滑圆弧轨道,半径为r、间距为L,图中oa水平,co竖直,在轨道顶端连有一阻值为R的电阻,整个装置处在一竖直向上的匀强磁场中,磁感应强度为B。现有一根长度稍大于L、质量为m、电阻不计的金属棒从轨道的顶端ab处由静止开始下滑,到达轨道底端cd时受到轨道的支持力为2mg。整个过程中金属棒与导轨接触良好,轨道电阻不计,求:
(1)金属棒到达轨道底端cd时的速度大小和通过电阻R的电流:
(2)金属棒从ab下滑到cd过程中回路中产生的焦耳热和通过R的电荷量:
(3)若金属棒在拉力作用下,从cd开始以速度v0向右沿轨道做匀速圆周运动,则在到达ab的过程中拉力做的功为多少?
如图所示,两根足够长的光滑金属导轨MN、PQ间距为l=0.5m,其电阻不计,两导轨及其构成的平面均与水平面成30°角。完全相同的两金属棒ab、cd分别垂直导轨放置,每棒两端都与导轨始终有良好接触,已知两棒的质量均为0.02kg,电阻均为R=0.1Ω,整个装置处在垂直于导轨平面向上的匀强磁场中,磁感应强度为B=0.2T,棒ab在平行于导轨向上的力F作用下,沿导轨向上匀速运动,而棒cd恰好能保持静止。取g="10m/s" 2,
问:(1)通过cd棒的电流I是多少,方向如何?
(2)棒ab受到的力F多大?
(3)当电流通过电路产生的焦耳热为Q=0.2J时,力F做的功W是多少?
如图所示,两根平行金属导轨与水平面间的夹角α=30°,导轨间距为l = 0.50m,金属杆ab、cd的质量均为m=1.0kg,电阻均为r = 0.10Ω,垂直于导轨水平放置.整个装置处于匀强磁场中,磁场方向垂直于轨道平面向上,磁感应强度B = 2.0T.用平行于导轨方向的拉力拉着ab杆沿轨道以某一速度匀速上升时,cd杆保持静止.不计导轨的电阻,导轨和杆ab、cd之间是光滑的,重力加速度g =10m/s2.求:
(1)回路中感应电流I的大小.
(2)拉力做功的功率.
(3)若某时刻将cd杆固定,同时将ab杆上拉力F增大至原来的2倍,求当ab杆速度v1=2m/s时杆的加速度和回路电功率P1
如图所示,间距为2l的两条水平虚线之间有水平方向的匀强磁场,磁感应强度为B。一质量为m、电阻为R的单匝正方形闭合导体线框abcd,从磁场上方某一高度处自由下落,cd边恰好垂直于磁场方向匀速进入磁场。已知线框边长为l,线框平面保持在竖直平面内且cd边始终与水平的磁场边界平行,重力加速度为g,不考虑空气阻力。求:
(1)线框开始下落时,cd边到磁场上边界的高度;
(2)若线框ab边刚离开磁场区域时的速度与cd边刚进入磁场区域时的速度相等,则从cd边刚离开磁场区域到ab边离开磁场区域的过程中,线框中所产生的焦耳热。
如图所示,电阻为R的长直螺线管,其两端通过电阻可忽略的导线相连接。一个质量为m的小条形磁铁A从静止开始落入其中,经过一段距离后以速度v做匀速运动。假设小磁铁在下落过程中始终沿螺线管的轴线运动且无翻转。
(1)定性分析说明:小磁铁的磁性越强,最后匀速运动的速度就越小;
(2)小磁铁做匀速运动时在回路中产生的感应电动势约为多少?
如图所示,在高度差h="0.5" m的平行虚线范围内,有磁感强度B="0.5" T、方向垂直于竖直平面向里的匀强磁场,正方形线框abcd的质量m="0.1" kg、边长L="0.5" m、电阻R=0.5,线框平面与竖直平面平行,静止在位置“I”时,cd边跟磁场下边缘有一段距离。现用一竖直向上的恒力F="4.0" N向上提线框,该框由位置“I”无初速度开始向上运动,穿过磁场区,最后到达位置“II”(ab边恰好出磁场),线框平面在运动中保持与磁场方向垂直,且cd边保持水平。设cd边刚进入磁场时,线框恰好开始做匀速运动。g取10 ,求:
(1)线框进入磁场前距磁场下边界的距离H;
(2)线框由位置“I”到位置“II”的过程中,恒力F做的功是多少?线框内产生的热量又是多少?
在范围足够大,方向竖直向下的匀强磁场中,B=0.2 T,有一水平放置的光滑框架,宽度为L=0.4 m,如图所示,框架上放置一质量为0.05 kg,电阻为1 Ω的金属杆cd,框架电阻不计.若cd杆以恒定加速度a=2 m/s2,由静止开始做匀变速运动,则
(1)在5 s内平均感应电动势是多少?
(2)第5 s末,回路中的电流多大?
(3)第5 s末,作用在cd杆上的水平外力多大?
如图所示,两根足够长的光滑金属导轨MN、PQ间距为l=0.5m,其电阻不计,两导轨及其构成的平面均与水平面成30°角.完全相同的两金属棒ab、cd分别垂直导轨放置,每棒两端都与导轨始终有良好接触,已知两棒的质量均为0.02kg,电阻均为R=0.1Ω,整个装置处在垂直于导轨平面向上的匀强磁场中,磁感应强度为B=0.2T,棒ab在平行于导轨向上的力F作用下,沿导轨向上匀速运动,而棒cd恰好能保持静止.取g="10m/s" 2,问:
(1)通过cd棒的电流I是多少,方向如何?
(2)棒ab受到的力F多大?
(3)当电流通过电路产生的焦耳热为Q=0.2J时,力F做的功W是多少?
如下图所示,两光滑金属导轨,间距d=0.2m,在桌面上的部分是水平的,处在磁感应强度B=0.1T、方向竖直向下的有界磁场中,电阻R=3Ω,桌面高H=0.8m,金属杆ab质量m=0.2kg、电阻r=1Ω,在导轨上距桌面h=0.2m高处由静止释放,落地点距桌面左边缘的水平距离s=0.4m,g=10m/s2,求:
(1)金属杆刚进入磁场时,R上的电流大小和方向;
(2)整个过程中R上放出的热量.
如图所示,金属导轨MNC和PQD,MN与PQ平行且间距为L,所在平面与水平面夹角为α,N、Q连线与MN垂直,M、P间接有阻值为R的电阻;光滑直导轨NC和QD在同一水平面内,与NQ的夹角都为锐角θ.均匀金属棒ab和ef质量均为m,长均为L,ab棒初始位置在水平导轨上与NQ重合;ef棒垂直放在倾斜导轨上,与导轨间的动摩擦因数为μ(μ较小).由导轨上的小立柱1和2阻挡而静止.空间有方向竖直的匀强磁场(图中未画出).两金属棒与导轨保持良好接触,不计所有导轨和ab棒的电阻,ef棒的阻值为R,最大静摩擦力与滑动摩擦力大小相等,忽略感应电流产生的磁场,重力加速度为g.
(1)若磁感应强度大小为B,给ab棒一个垂直于NQ、水平向右的速度v1,在水平导轨上沿运动方向滑行一段距离后停止,ef棒始终静止,求此过程ef棒上产生的热量;
(2)在(1)问过程中,ab棒滑行距离为d,求通过ab棒某横截面的电量;
(3)若ab棒以垂直于NQ的速度v2在水平导轨上向右匀速运动,并在NQ位置时取走小立柱1和2,且运动过程中ef棒始终静止.求此状态下最强磁场的磁感应强度及此磁场下ab棒运动的最大距离.(提示:)
如图所示,一平面框架与水平面成37°角,宽L=0.4m,上、下两端各有一个电阻R0=1Ω,框架的其他部分电阻不计,框架足够长.垂直于框平面的方向存在向上的匀强磁场,磁感应强度B=2T。ab为金属杆,其长度为L=0.4m,质量m=0.8kg,电阻r=0.5Ω,金属杆与框架的动摩擦因数μ=0.5。金属杆由静止开始下滑,直到速度达到最大的过程中,金属杆克服磁场力所做的功为W=1.5J。已知sin37°=0.6,cos37°=0.8;g取10m/s2.求:
(1)ab杆达到的最大速度v.
(2)ab杆从开始到速度最大的过程中沿斜面下滑的距离.
(3)在该过程中通过ab的电荷量.
如下图(甲)所示,水平面上两根足够长的金属导轨平行固定放置,间距为L,导轨一端通过导线与阻值为R的电阻连接,导轨上放一质量为m的金属杆.金属杆与导轨的电阻忽略不计,匀强磁场的方向竖直向下.现用与导轨平行的恒定拉力F作用在金属杆上,金属杆最终将做匀速运动.当改变拉力的F大小时,金属杆相对应的匀速运动速度v也会变化,v和F的关系如右图(乙)所示.(取g="10" m/s2)
(1)金属杆在匀速运动之前做什么运动?
(2)若m="0.5" kg,L="0.5" m,R="0.5" Ω, 磁感应强度B为多大?
如图甲所示,电阻不计,间距为的平行长金属导轨置于水平面内,阻值为的导体棒固定连接在导轨左端,另一阻值也为的导体棒垂直放置到导轨上,与导轨接触良好,并可在导轨上无摩擦移动。现有一根轻杆一端固定在中点,另一端固定于墙上,轻杆与导轨保持平行,两棒间距为。若整个装置处于方向竖直向下的匀强磁场中,且从某一时刻开始,磁感应强度随时间按图乙所示的方式变化。
(1)求在0~时间内流过导体棒的电流的大小与方向;
(2)求在时间内导体棒产生的热量;
(3)1.5时刻杆对导体棒的作用力的大小和方向。
如图甲所示,在磁感应强度为B的水平匀强磁场中,有两根竖直放置相距为L平行光滑的金属导轨,顶端用一阻直为R的电阻相连,两导轨所在的竖直平面与磁场方向垂直。一根质量为m的金属棒从静止开始沿导轨竖直向下运动,当金属棒下落龙时,速度达到最大,整个过程中金属棒与导轨保持垂直且接触良好。重力加速度为g,导轨与金属棒的电阻可忽略不计,设导轨足够长。求:
(l)通过电阻R的最大电流;
(2)从开始到速度最大过程中,金属棒克服安培力做的功WA;
(3)若用电容为C的平行板电容器代替电阻R,如图乙所示,仍将金属棒从静止释放,经历时间t的瞬时速度v1。
如图所示,竖直平面内有足够长的金属导轨,轨距0.2m,金属导体棒ab可在导轨上无摩擦地上下滑动,ab的电阻为0.4Ω,导轨电阻不计,导体棒ab的质量为0.4g,垂直纸面向里的匀强磁场的磁应强度为0.2T,且磁场区域足够大,当ab导体棒自由下落0.4s时,突然接通电键K,求:
(1)K接通的瞬间,ab导体棒的加速度;
(2)ab导体棒匀速下落的速度是多少?(g取10m/s2)
试题篮
()