如图所示,在磁感应强度B=1.0T的匀强磁场中,金属杆PQ在外力F作用下在粗糙U型导轨上以速度v=2向右匀速滑动,两导轨间距离L=1.0m,电阻R=3.0,金属杆的电阻r=1.0,导轨电阻忽略不计,则下列说法正确的是( )
A.通过的感应电流的方向为由d到a |
B.金属杆PQ切割磁感线产生的感应电动势的大小为2.0 V |
C.金属杆PQ受到的安培力大小为0.5 N |
D.外力F做功大小等于电路产生的焦耳热 |
如图所示的竖直平面内,水平条形区域I和Ⅱ内有方向垂直竖直面向里的匀强磁场,其宽度均为d,I和Ⅱ之间有一宽度为h的无磁场区域,h>d。一质量为m、边长为d的正方形线框由距区域I上边界某一高度处静止释放,在穿过两磁场区域的过程中,通过线框的电流及其变化情况相同。重力加速度为g,空气阻力忽略不计。则下列说法正确的是
A.线框进入区域I时与离开区域I时的电流方向相同 |
B.线框进入区域Ⅱ时与离开区域Ⅱ时所受安培力的方向相同 |
C.线框有可能匀速通过磁场区域I |
D.线框通过区域I和区域Ⅱ产生的总热量为Q=2mg(d+h) |
如图所示,一个闭合三角形导线框ABC位于竖直平面内,其下方(略靠前)固定一根与线框平面平行的水平直导线,导线中通以图示方向的恒定电流。释放线框,它由实线位置下落到虚线位置未发生转动,在此过程中
A.线框中感应电流方向依次为顺时针→逆时针 |
B.线框的磁通量为零时,感应电流却不为零 |
C.线框所受安培力的合力方向依次为向上→向下→向上 |
D.线框所受安培力的合力为零,做自由落体运动 |
如图所示,两条足够长的平行金属导轨相距L,与水平面的夹角为,整个空间存在垂直于导轨平面的匀强磁场,磁感应强度大小均为B,虚线上方轨道光滑且磁场方向向上,虚线下方轨道粗糙且磁场方向向下.当导体棒EF以初速度沿导轨上滑至最大高度的过程中,导体棒MN一直静止在导轨上,若两导体棒质量均为m、电阻均为R,导轨电阻不计,重力加速度为g,在此过程中导体棒EF上产生的焦耳热为Q,求:
(1)导体棒MN受到的最大摩擦力;(2)导体棒EF上升的最大高度.
如图所示,MN右侧有一正三角形匀强磁场区域(边缘磁场忽略不计),上边界与MN垂直。现有一与磁场边界完全相同的三角形导体框,从MN左侧垂直于MN匀速向右运动.导体框穿过磁场过程中所受安培力F的大小随时间变化的图象以及感应电流i随时间变化的图象正确的是(取逆时针电流为正)( )
如图所示,边长为2l的正方形虚线框内有垂直于纸面向里的匀强磁场,一个边长为l的正方形金属导线框所在平面与磁场方向垂直,导线框和虚线框的对角线共线,每条边的材料均相同。从t=0开始,使导线框从图示位置开始以恒定速度沿对角线方向进入磁场,直到整个导线框离开磁场区域。导线框中的感应电流i(取逆时针方向为正)、导线框受到的安培力F(取向左为正)、导线框中电功率的瞬时值P以及通过导体横截面的电荷量q随时间变化的关系正确的是
如图所示,金属棒ab置于水平放置的金属导体框架cdef上,棒ab与框架接触良好。从某一时刻开始,给这个空间施加一个斜向上的匀强磁场,并且磁场均匀增加,ab棒仍静止,在磁场均匀增加的过程中,关于ab棒受到的摩擦力,下列说法正确的是
A.摩擦力大小不变,方向向右 |
B.摩擦力变大,方向向右 |
C.摩擦力变大,方向向左 |
D.摩擦力变小,方向向左 |
如图,一长为10cm的金属棒用两个完全相同的弹簧水平地悬挂在匀强磁场中;磁场的磁感应强度大小为0.1T,方向垂直于纸面向里;弹簧上端固定,下端与金属棒绝缘,金属棒通过开关与一电动势为12V的电池相连,电路总电阻为2。已知开关断开时两弹簧的伸长量均为0.5cm;闭合开关,系统重新平衡后,两弹簧的伸长量与开关断开时相比均改变了0.3cm,重力加速度大小取。判断开关闭合后金属棒所受安培力的方向,并求出金属棒的质量。
如图,由某种粗细均匀的总电阻为3的金属条制成的矩形线框,固定在水平面内且处于方向竖直向下的匀强磁场中。一接入电路电阻为的导体棒,在水平拉力作用下沿、以速度匀速滑动,滑动过程始终与垂直,且与线框接触良好,不计摩擦。在从靠近处向滑动的过程中()
A. | 中电流先增大后减小 |
B. | 两端电压先减小后增大 |
C. | 上拉力的功率先减小后增大 |
D. | 线框消耗的电功率先减小后增大 |
如图所示,足够长的平行光滑金属导轨水平放置,宽度一端连接的电阻。导线所在空间存在竖直向下的匀强磁场,磁感应强度。导体棒MN放在导轨上,其长度恰好等于导轨间距,与导轨接触良好,导轨和导体棒的电阻均可忽略不计。在平行于导轨的拉力作用下,导体棒沿导轨向右匀速运动,速度。求:
(1)感应电动势E和感应电流;
(2)在0.1时间内,拉力的冲量的大小;
(3)若将MN换为电阻的导体棒,其他条件不变,求导体棒两端的电压。
如图所示,两光滑金属导轨,间距d="0.2" m,在桌面上的部分是水平的,处在磁感应强度B="0.1" T、方向竖直向下的有界磁场中,电阻R="3" Ω,桌面高H="0.8" m,金属杆ab质量m="0.2" kg、电阻r="1" Ω,在导轨上距桌面h="0.2" m高处由静止释放,落地点距桌面左边缘的水平距离s="0.4" m,g="10" m/s2,求:
(1)金属杆刚进入磁场时,R上的电流大小;
(2)整个过程中R放出的热量.
如图所示,电阻Rab=0.1Ω的导体ab沿光滑导线框向右做匀速运动线框中接有电阻R=0.4Ω,线框放在磁感应强度B=0.1T的匀强磁场中,磁场方向垂直于线框平面,导体的ab长度l=0.4m,运动速度v=10m/s.线框的电阻不计.
(1)电路abcd中相当于电源的部分是 ,相当于电源的正极是 端.
(2)使导体ab向右匀速运动所需的外力F’= N,方向
(3)电阻R上消耗的功率P = W.
如图所示,在匀强磁场中固定放置一根串接一电阻R的直角形金属导轨aob(在纸面内),磁场方向垂直纸面朝里,另有两根金属导轨c、d分别平行于oa、ob放置围成图示的一个正方形回路。保持导轨之间接触良好,金属导轨的电阻不计。现经历以下两个过程:①以速率v移动d,使它与ob的距离增大一倍;②再以同样速率v移动c,使它与oa的距离减小一半;设上述两个过程中电阻R产生的热量依次为Q1、Q2,则( )
A.Q1=Q2 | B.Q1=2Q2 | C.Q2=2Q1 | D.Q2=4Q1 |
如图为某种电磁泵模型,泵体是长为L1,宽与高均为L2的长方体。泵体处在方向垂直向外、磁感应强度为B的匀强磁场中,泵体的上下表面接电压为U的电源(内阻不计),理想电流表示数为I,若电磁泵和水面高度差为h,液体的电阻率为ρ,在t时间内抽取液体的质量为m,不计液体在流动中和管壁之间的阻力,取重力加速度为g。则
A.泵体上表面应接电源负极 |
B.电磁泵对液体产生的推力大小为BIL1 |
C.电源提供的电功率为 |
D.质量为m的液体离开泵时的动能为 |
轻质细线吊着一质量m=0.8kg,边长L=0.8m、匝数n=20、总电阻r=1Ω的正方形线圈。边长l=0.4m的正方形磁场区域对称地分布在线圈下边的两侧,磁场方向垂直纸面向里,如图甲所示,磁感应强度B随时间变化规律如图乙所示。从t=0开始经t0时间细线开始松弛,在前t0时间内线圈中产生的感应电流为_________A,t0的值为_________s。
试题篮
()