多选如图,足够长的U型光滑金属导轨平面与水平面成角(0<<90°),其中MN和PQ平行且间距为,导轨平面与磁感应强度为B的匀强磁场垂直,导轨电阻不计。金属棒棒接入电路的电阻为,并与两导轨始终保持垂直且良好接触,使棒由静止开始沿导轨下滑,当流过棒某一横截面的电量为时,它的速度大小为,则金属棒在这一过程中:( )
A.棒运动的平均速度大小为 |
B.滑行距离为 |
C.产生的焦耳热为 |
D.受到的最大安培力大小为 |
如图所示,倾角为、宽度为、长为的光滑倾斜导轨,导轨C1D1、C2D2顶端接有定值电阻,倾斜导轨置于垂直导轨平面斜向上的匀强磁场中,磁感应强度为B=5T,C1A1、C2A2是长为S=4.5m的粗糙水平轨道,A1B1、A2B2是半径为R=0.5m处于竖直平面内的光滑圆环(其中B1、B 2为弹性挡板),整个轨道对称。在导轨顶端垂直于导轨放一根质量为m=2kg、电阻不计的金属棒MN,当开关S闭合时,金属棒从倾斜轨道顶端静止释放,已知金属棒到达倾斜轨道底端前已达最大速度,当金属棒刚滑到倾斜导轨底端时断开开关S,(不考虑金属棒MN经过接点C1、C2处和棒与B1、B2处弹性挡板碰撞时的机械能损失,整个运动过程中金属棒始终保持水平,水平导轨与金属棒MN之间的动摩擦因数为µ=0.1,g=10m/s2)。求:
(1)开关闭合时金属棒滑到倾斜轨道底端时的速度;
(2)金属棒MN在倾斜导轨上运动的过程中,电阻R0上产生的热量Q;
(3)当金属棒第三次经过A1A2时对轨道的压力。
两根固定在水平面上的光滑平行金属导轨,一端接有阻值为的电阻,一匀强磁场在如图区域中与导轨平面垂直。在导轨上垂直导轨跨放质量的金属直杆,金属杆的电阻为,金属杆与导轨接触良好,导轨足够长且电阻不计。以位置作为计时起点,开始时金属杆在垂直杆的水平恒力作用下向右匀速运动,电阻R上的电功率是。
(1)求金属杆匀速时速度大小;
(2)若在时刻撤去拉力后,时刻R上的功率为时,求金属棒在时刻的加速度,以及-之间整个回路的焦耳热。
如图所示,两个有界匀强磁场,磁感应强度大小分别为B和2B,方向分别垂直纸面向里和向外,其宽度均为L,距磁场区域的左侧L处,有一边长为L的正方形导体线框,总电阻为R,且线框平面与磁场方向垂直,线框一边平行于磁场边界,现用外力F使线框以图示方向的速度v匀速穿过磁场区域,以初始位置为计时起点,规定:线框中电流沿逆时针方向时的电动势E为正,磁感线垂直纸面向里时磁通量Φ为正,外力F向右为正。则以下关于线框中的磁通量Φ、感应电动势E、外力F和电功率P随时间变化的图象中正确的是
如图所示,两根足够长的光滑金属导轨MN、PQ间距为L=0.5m,其电阻不计,两导轨及其构成的平面均与水平面成30°角。完全相同的两金属棒ab、cd分别垂直导轨放置,每棒两端都与导轨始终有良好接触,已知两棒的质量均为0.02kg,电阻均为R=0.1Ω,整个装置处在垂直于导轨平面向上的匀强磁场中,磁感应强度为B=0.2T,棒ab在平行于导轨向上的力F作用下,沿导轨向上匀速运动,而棒cd恰好能保持静止。取g=10m/s2,问:
(1)通过cd棒的电流I是多少,方向如何?
(2)棒ab受到的力F多大?
(3)力F的功率P是多少?
如图所示,相距为L的两条足够长光滑平行金属导轨固定在水平面上,导轨由两种材料组成。PG右侧部分单位长度电阻为r0,且PQ=QH=GH=L。PG左侧导轨与导体棒电阻均不计。整个导轨处于匀强磁场中,磁场方向垂直于导轨平面向下,磁感应强度为B。质量为m的导体棒AC在恒力F作用下从静止开始运动,在到达PG之前导体棒AC已经匀速。
(1)求当导体棒匀速运动时回路中的电流;
(2)若导体棒运动到PQ中点时速度大小为v1,试计算此时导体棒加速度;
(3)若导体棒初始位置与PG相距为d,运动到QH位置时速度大小为v2,试计算整个过程回路中产生的焦耳热。
如图所示,在匀强磁场中有一倾斜的平行金属导轨。导轨间距为L,长为3d,导轨平面与水平面的夹角为,在导轨的中部刷有一段长为d的薄绝缘涂层。匀强磁场的磁感应强度大小为B,方向与导轨平面垂直。质量为m的导体棒从导轨的顶端由静止释放,在滑上涂层之前已经做匀速运动,并一直匀速滑到导轨底端。导体棒始终与导轨垂直,且仅与涂层间有摩擦,接在两导轨间的电阻为R,其他部分的电阻均不计,重力加速度为g。求:
(1)导体棒与涂层间的动摩擦因数;
(2)导体棒匀速运动的速度大小v;
(3)整个运动过程中,电阻产生的焦耳热Q。
如图所示,足够长的光滑平行金属导轨MN、PQ倾斜放置,两导轨间距离为L,导轨平面与水平面间的夹角θ,所处的匀强磁场垂直于导轨平面向上,质量为m的金属棒ab垂直于导轨放置,导轨和金属棒接触良好,不计导轨和金属棒ab的电阻,重力加速度为g。若在导轨的M、P两端连接阻值R的电阻,将金属棒ab由静止释放,则在下滑的过程中,金属棒ab沿导轨下滑的稳定速度为v,若在导轨 M、P两端将电阻R改接成电容为C的电容器,仍将金属棒ab由静止释放,金属棒ab下滑时间t,此过程中电容器没有被击穿,求:
(1)匀强磁场的磁感应强度的大小为多少?
(2)金属棒ab下滑ts末的速度?
如图所示,空间存在一有边界的条形匀强磁场区域,磁场方向与竖直平面(纸面)垂直,磁场边界的间距为L。一个质量为m、边长也为L的正方形导线框沿竖直方向运动,线框所在平面始终与磁场方向垂直,且线框上、下边始终与磁场的边界平行。t=0时刻导线框的上边恰好与磁场的下边界重合(图中位置I),导线框的速度为v0。经历一段时间后,当导线框的下边恰好与磁场的上边界重合时(图中位置Ⅱ),导线框的速度刚好为零.此后,导线框下落,经过一段时间回到初始位置I(不计空气阻力),则
A.上升过程中,导线框的加速度逐渐减小 |
B.上升过程克服重力做功的平均功率小于下降过程重力的平均功率 |
C.上升过程中线框产生的热量比下降过程中线框产生的热量的多 |
D.上升过程中合力做的功与下降过程中合力做的功相等 |
如图甲所示,abcd是位于竖直平面内的正方形闭合金属线框,金属线框的质量为m,电阻为R。在金属线框的下方有一匀强磁场区域,MN和M′N′是匀强磁场区域的水平边界,并与线框的bc边平行,磁场方向与线框平面垂直。现金属线框由距MN的某一高度从静止开始下落,图乙是金属线框由开始下落到完全穿过匀强磁场区域瞬间的速度-时间图象,图象中坐标轴上所标出的字母均为已知量。可知
A.金属框初始位置的bc边到边界MN的高度为v1t1 |
B.金属框的边长为 |
C.磁场的磁感应强度为 |
D.在进入磁场过程中金属框产生的热为mgv1(t2-t1) |
如图甲所示,固定于水平面上的两根互相平行且足够长的金属导轨,处在方向竖直向下的匀强磁场中。两导轨间距离l= 0.5m,两轨道的左端之间接有一个R=0.5W的电阻。导轨上垂直放置一根质量m=0.5kg的金属杆。金属杆与导轨的电阻忽略不计。将与导轨平行的恒定拉力F作用在金属杆上,使杆从静止开始运动,杆最终将做匀速运动。当改变拉力的大小时,相对应的匀速运动速度v也会变化,v与F的关系如图乙所示。取重力加速度g=10m/s2,金属杆与导轨间的最大静摩擦力与滑动摩擦力相等,金属杆始终与轨道垂直且它们之间保持良好接触。
(1)金属杆在匀速运动之前做什么运动?
(2)求磁感应强度B的大小,以及金属杆与导轨间的动摩擦因数μ 。
两足够长的平行金属导轨间的距离为L,导轨光滑且电阻不计,导轨所在的平面与水平面夹角为θ.在导轨所在平面内,分布磁感应强度为B、方向垂直于导轨所在平面的匀强磁场.把一个质量为m的导体棒ab放在金属导轨上,在外力作用下保持静止,导体棒与金属导轨垂直、且接触良好,导体棒与金属导轨接触的两点间的电阻为R1.完成下列问题:
(1) 如图甲,金属导轨的一端接一个内阻为r的直流电源。撤去外力后导体棒仍能静止.求直流电源电动势;
(2) 如图乙,金属导轨的一端接一个阻值为R2的定值电阻,撤去外力让导体棒由静止开始下滑.在加速下滑的过程中,当导体棒的速度达到v时,求此时导体棒的加速度;
(3) 求(2)问中导体棒所能达到的最大速度。
两根足够长的光滑平行直导轨MN、PQ与水平面成角放置,两导轨间距为L,M、P两点间接有阻值为R的电阻,一根质量为m的均匀直金属杆ab放在两导轨上,并与导轨垂直,整套装置处于磁感应强度为B的匀强磁场中,磁场方向垂直于导轨平面向上,导轨和金属杆接触良好,它们的电阻不计,现让ab杆由静止开始沿导轨下滑。
(1)求ab杆下滑的最大速度;
(2)ab杆由静止释放至达到最大速度的过程中,电阻R产生的焦耳热为Q,求该过程中ab杆下滑的距离x
如图所示,两金属杆AB和CD长均为L,电阻均为R,质量分别为3m和m。用两根质量和电阻均可忽略的不可伸长的柔软导线将它们连成闭合回路,并悬挂在水平、光滑、不导电的圆棒两侧。在金属杆AB下方有高度为H的匀强磁场,磁感应强度大小为B,方向与回路平面垂直,此时,CD处于磁场中。现从静止开始释放金属杆AB,经过一段时间,AB即将进入磁场的上边界时,其加速度为零,此时金属杆CD尚未离开磁场,这一过程中杆AB产生的焦耳热为Q。则
(1)AB棒刚达到磁场边界时的速度v1多大?
(2)此过程中金属杆CD移动的距离h和通过导线截面的电量q分别是多少?
(3)通过计算说明金属杆AB在磁场中可能具有的速度大小v2在什么范围内;
(4)试分析金属杆AB在穿过整个磁场区域过程中可能出现的运动情况(加速度与速度的变化情况)。
试题篮
()