在如图所示的倾角为θ的光滑斜面上,存在着两个磁感应强度大小为B的匀强磁场,区域I的磁场方向垂直斜面向上,区域Ⅱ的磁场方向垂直斜面向下,磁场的宽度均为L,一个质量为m、电阻为R、边长也为L的正方形导线框,由静止开始沿斜面下滑,t1时 ab边刚越过GH进入磁场Ⅰ区,此时线框恰好以速度 v1做匀速直线运动;t2时ab边下滑到JP与MN的中间位置,此时线框又恰好以速度v2做匀速直线运动。重力加速度为g,下列说法中正确的有:( )
A.t1时,线框具有加速度a=3gsinθ |
B.线框两次匀速直线运动的速度v1: v2=2:1 |
C.从t1到t2过程中,线框克服安培力做功的大小等于重力势能的减少量 |
D.从t1到t2,有机械能转化为电能 |
如图所示,相距20cm的平行金属导轨所在平面与水平面夹角θ=37°,现在导轨上放一质量为330g的金属棒ab,它与导轨间动摩擦因数为0.5,整个装置处于磁感应强度为2T的竖直向上匀强磁场中,导轨所接电源的电动势为15V,内阻不计,滑动变阻器的阻值满足要求,其他部分电阻不计,g取10m/s2,为了保证ab处于静止状态(cosθ=0.8),则:
(1)ab通入的最大电流为多少?
(2)ab通入的最小电流为多少?
(3)R的调节范围至少多大?
如图所示,两条导线互相垂直,其中AB固定,CD可自由活动,两者相隔一小段距离,当两导线分别通以图示方向的电流时,垂直纸面向里看导线CD将( )
A.顺时针方向转动,同时靠近AB |
B.逆时针方向转动,同时靠近AB |
C.顺时外方向转动,同时远离AB |
D.逆时针方向转动,同时远离AB |
如图所示,在竖直向下的匀强磁场中,有两根竖直放置的平行导轨AB、CD,导轨上放有质量为m的金属棒MN,棒与导轨间的动摩擦因数为μ,现从t=0时刻起,给棒通以图示方向的电流,且电流强度与时间成正比,即I=kt,其中k为恒量.若金属棒与导轨始终垂直,则如图所示的表示棒所受的摩擦力随时间变化的四幅图中,正确的是( )
如图所示,用两根相同的轻弹簧秤吊着一根铜棒,铜棒所在的虚线范围内有垂直纸面的匀强磁场,当棒中通过向右的电流且棒静止时,弹簧处于伸长状态,弹簧秤的读数均为F1;将棒中的电流反向,静止时弹簧秤的读数均为F2,且F2>F1。则由此可以确定( )
A.磁场的方向 | B.磁感应强度的大小 |
C.铜棒的质量 | D.弹簧的劲度系数 |
如图所示,质量为0.05kg,长l=0.1m的铜棒,用长度也为l的两根轻软导线水平悬挂在竖直向上的匀强磁场中,磁感应强度为B=0.5T.不通电时,轻线在竖直方向,通入恒定电流后,棒向外偏转的最大角度θ=37°,求此棒中恒定电流多大?(不考虑棒摆动过程中产生的感应电流,g取10N/kg)
同学甲的解法如下:对铜棒受力分析如图所示:
当最大偏转角θ=37°时,棒受力平衡,有:
FTcosθ=mg,FTsinθ=F安=BIl
得I==A=7.5A
同学乙的解法如下:
F安做功:WF=Fx1=BIlsin37°×lsin37°=BI(lsin37°)2
重力做功:
WG=-mgx2=-mgl(1-cos37°)
由动能定理得:WF+WG=0
代入数据解得:I=A≈5.56A
请你对甲、乙两同学的解法作出评价:若你对两者都不支持,则给出你认为正确的解答.
如图所示,在倾角为37°的光滑斜面上有一根长为0.4m,质量为6×10-2kg的通电直导线,电流强度I=1A,方向垂直于纸面向外,导线用平行斜面的轻绳拴住不动,整个装置放在磁感应强度每秒增加0.4T,方向竖直向上的磁场中.设t=0时,B=0,则需要多长时间,斜面对导线的支持力为零?(g取10m/s2)
如图所示,长为L的通电直导体棒放在光滑水平绝缘轨道上,劲度系数为k的水平轻弹簧一端固定,另一端拴在棒的中点,且与棒垂直,整个装置处于方向竖直向上、磁感应强度为B的匀强磁场中,弹簧伸长x,棒处于静止状态.则 ( )
A.导体棒中的电流方向从b流向a |
B.导体棒中的电流大小为 |
C.若只将磁场方向缓慢顺时针转过一小角度,x变大 |
D.若只将磁场方向缓慢逆时针转过一小角度,x变大 |
在倾斜角θ=30°的光滑导体滑轨A和B的上端接入一个电动势E=3 V,内阻不计的电源,滑轨间距L=10 cm,将一个质量m=30 g,电阻R=0.5 Ω的金属棒水平放置在滑轨上,若滑轨周围加一匀强磁场,当闭合开关S后,金属棒刚好静止在滑轨上,如图所示,求滑轨周围空间所加磁场磁感应强度的最小值及其方向.
如图所示,平行于纸面水平向右的匀强磁场,磁感应强度B1=1T,位于纸面内的细直导线,长L=1m,通过I=1A的恒定电流.当导线与B1成60°夹角时,发现其受到的安培力为零,则该区域同时存在的另一匀强磁场的磁感应强度B2的值,不可能的是( )
A.T | B.T | C.1 T | D.T |
(16分)(2010·盐城模拟)粗细均匀的直导线ab的两端悬挂在两根相同的
弹簧下边,ab恰好处在水平位置(如图13所示).已知ab的质量为m
=10 g,长度L=60 cm,沿水平方向与ab垂直的匀强磁场的磁感应强
度B=0.4 T. 图13
(1)要使两根弹簧能处在自然状态,既不被拉长,也不被压缩,ab中应沿什么方向、通过多大的电流?
(2)当导线中有方向从a到b、大小为0.2 A的电流通过时,两根弹簧均被拉长了Δx=1 mm,求该弹簧的劲度系数.
(3)当导线中由b到a方向通过0.2 A的电流时两根弹簧被拉长多少?(取g=9.6 m/s2=
9.6 N/kg)
、如图所示,匀强磁场的方向竖直向下,磁场中有光滑的水平桌面,在桌面上平放着内壁光滑、底部有带电小球的试管。在水平拉力F的作用下,试管向右匀速运动,带电小球能从试管口处飞出,则( )
A.小球带负电 |
B.小球运动的轨迹是一条抛物线 |
C.洛伦兹力对小球做正功 |
D.维持试管匀速运动的拉力F应逐渐增大 |
两条导线互相垂直,相隔一段较小的距离,如图所示;其中一条AB是固定的,另一条CD能自由转动,当直流电流按图示方向通入两条导线时,CD导线将:( )
A.逆时针方向转动,同时靠近导线AB |
B.顺时针方向转动,同时靠近导线AB |
C.逆时针方向转动,同时离开导线AB |
D.顺时针方向转动,同时离开导线AB |
据报道,最近已研制出一种可投入使用的电磁轨道炮,其原理如图所示。炮弹(可视为长方形导体)置于两固定的平行导轨之间,并与轨道壁密接。开始时炮弹在导轨的一端,通以电流后炮弹会被磁力加速,最后从位于导轨另一端的出口高速射出。设两导轨之间的距离,导轨长,炮弹质量。导轨上的电流的方向如图中箭头所示。可以认为,炮弹在轨道内运动时,它所在处磁场的磁感应强度始终为,方向垂直于纸面向里。若炮弹出口速度为,求通过导轨的电流。忽略摩擦力与重力的影响。
时,磁场在平面内的分布如题23图所示.其磁感应强度的大小均为,方向垂直于平面,相邻磁场区域的磁场方向相反.每个同向磁场区域的宽度均为.整个磁场以速度沿轴正方向匀速运动.
(1)若在磁场所在区间,平面内放置一由匝线圈串联而成的矩形导线框,线框的边平行于轴.、,总电阻为,线框始终保持静止.求
①线框中产生的总电动势大小和导线中的电流大小;
②线框所受安培力的大小和方向.
(2)该运动的磁场可视为沿x轴传播的波,设垂直于纸面向外的磁场方向为正,画出时磁感应强度的波形图,并求波长和频率.
试题篮
()