优题课 - 聚名师,上好课(www.youtike.com)
  首页 / 试题库 / 高中物理试题 / 日光灯镇流器的作用和原理 / 计算题
高中物理

如图,在竖直向下的磁感应强度为B的匀强磁场中,两根足够长的平行光滑金属轨道MN、PQ固定在水平面内,相距为L。一质量为m的导体棒ab垂直于MN、PQ放在轨道上,与轨道接触良好。轨道和导体棒的电阻均不计。
(1)如图1,若轨道左端MP间接一阻值为R的电阻,导体棒在拉力F的作用下以速度v沿轨道做匀速运动。请通过公式推导证明:在任意一段时间Δt内,拉力F所做的功与电路获取的电能相等。

(2)如图2,若轨道左端接一电动势为E、内阻为r的电源和一阻值未知的电阻。闭合开关S,导体棒从静止开始运动,经过一段时间后,导体棒达到最大速度vm,求此时电源的输出功率。

(3)如图3,若轨道左端接一电容器,电容器的电容为C,导体棒在水平拉力的作用下从静止开始向右运动。电容器两极板电势差随时间变化的图象如图4所示,已知t1时刻电容器两极板间的电势差为U1。求导体棒运动过程中受到的水平拉力大小。
      

  • 题型:未知
  • 难度:未知

如图甲所示,空间存在B=0.5T,方向竖直向下的匀强磁场,MN、PQ是处于同一水平面内相互平行的粗糙长直导轨,间距L=0.2m,R是连接在导轨一端的电阻,ab是跨接在导轨上质量为m=0.1kg的导体棒。从零时刻开始,通过一小型电动机对ab棒施加一个牵引力F,方向水平向左,使其从静止开始沿导轨做加速运动,此过程中棒始终保持与导轨垂直且接触良好。图乙是棒的v-t图象,其中OA段是直线,AC是曲线,DE是曲线图象的渐进线,小型电动机在12s末达到额定功率P=4.5W,此后保持功率不变。除R外,其余部分电阻均不计,g=10m/s2,求:

(1)ab在0~12s内的加速度大小;
(2)ab与导轨间的动摩擦因数;
(3)电阻R的阻值;
(4)若t=17s时,导体棒ab达到最大速度,从0~17s内的位移为100m,求12~17s内,R上产生的热量。

  • 题型:未知
  • 难度:未知

如图甲所示,光滑且足够长的平行金属导轨MN、PQ固定在同一水平面上,两导轨间距L=0.30m。导轨电阻忽略不计,其间接有固定电阻R=0.40Ω.导轨上停放一质量为m=0.10kg、电阻r=0.20Ω的金属杆ab,整个装置处于磁感应强度B=0.50T的匀强磁场中,磁场方向竖直向下。利用一外力F沿水平方向拉金属杆ab,使之由静止开始做匀加速直线运动,电压传感器可将R两端的电压U即时采集并输入电脑,并获得U随时间t的关系如图乙所示。求:

(1)金属杆加速度的大小;
(2)第2s末外力的瞬时功率。

  • 题型:未知
  • 难度:未知

(10分)如图所示,倾角θ=30°、宽L=1m的足够长的U形光滑金属导轨固定在磁感应强度大小B=IT、范围足够大的匀强磁场中,磁场方向垂直导轨平面向上。一根质量m=0.2kg,电阻R=l的金属棒ab垂直于导轨放置。现用一平行于导轨向上的牵引力F作用在棒上,使棒由静止开始沿导轨向上运动,运动中ab棒始终与导轨接触良好,导轨   电阻不计,重力加速度g取l0m/s2。求:

(1)若牵引力的功率P恒为56W,则ab棒运动的最终速度为多大?
(2)当ab棒沿导轨向上运动到某一速度时撤去牵引力,从撤去牵引力到ab棒的速度为零,通过ab棒的电量q=0.5C,则撤去牵引力后ab棒向上滑动的距离多大?

  • 题型:未知
  • 难度:未知

两根相距为L的足够长的金属直角导轨如图所示放置,它们各有一边在同一水平面内,另一边垂直于水平面.质量均为m的金属细杆ab、cd与导轨垂直接触形成闭合回路,杆与水平和竖直导轨之间有相同的动摩擦因数μ,导轨电阻不计,回路总电阻为2R,整个装置处于磁感应强度大小为B、方向竖直向上的匀强磁场中.当ab杆在平行于水平导轨的拉力作用下沿导轨向右匀速运动时,cd杆也正好以某一速度向下做匀速运动,设运动过程中金属细杆ab、cd与导轨接触良好,重力加速度为g,求:

(1)ab杆匀速运动的速度v1
(2)ab杆所受拉力F;
(3)ab杆以v1匀速运动时,cd杆以v2(v2已知)匀速运动,则在cd杆向下运动过程中,整个回路中产生的焦耳热.

  • 题型:未知
  • 难度:未知

如图所示,平行金属导轨与水平面间夹角均为θ=370,导轨间距为lm,电阻不计,导轨足够长。两根金属棒ab和a'b'的质量都是0.2kg,电阻都是1Ω,与导轨垂直放置且接触良好,金属棒和导轨之间的动摩擦因数为0.25,两个导轨平面处均存在着垂直轨道平面向上的匀强磁场(图中未画出),磁感应强度B的大小相同。让a'b'固定不动,将金属棒ab由静止释放,当ab下滑速度达到稳定时,整个回路消耗的电功率为8W。求:

⑴ab达到的最大速度多大?
⑵ab下落了30m高度时,其下滑速度已经达到稳定,则此过程中回路电流的发热量Q多大?
⑶如果将ab与a'b'同时由静止释放,当ab下落了30m高度时,其下滑速度也已经达到稳定,则此过程中回路电流的发热量Q'为多大?(g=10m/s2,sin370=0.6,cos370=0.8)

  • 题型:未知
  • 难度:未知

如图所示,在匀强磁场中有一倾斜的平行金属导轨,导轨间距为L=0.2m,长为2d,d=0.5m,上半段d导轨光滑,下半段d导轨的动摩擦因素为μ=,导轨平面与水平面的夹角为θ=30°.匀强磁场的磁感应强度大小为B=5T,方向与导轨平面垂直.质量为m=0.2kg的导体棒从导轨的顶端由静止释放,在粗糙的下半段一直做匀速运动,导体棒始终与导轨垂直,接在两导轨间的电阻为R=3Ω,导体棒的电阻为r=1Ω,其他部分的电阻均不计,重力加速度取g=10m/s2,求:

(1)导体棒到达轨道底端时的速度大小;
(2)导体棒进入粗糙轨道前,通过电阻R上的电量q;
(3)整个运动过程中,电阻R产生的焦耳热Q.

  • 题型:未知
  • 难度:未知

如图所示,PQ和MN是固定于水平面内的平行光滑金属轨道,轨道足够长,其电阻可忽略不计。金属棒ab、cd放在轨道上,始终与轨道垂直,且接触良好。金属棒ab、cd的质量均为m,长度均为L。两金属棒的长度恰好等于轨道的间距,它们与轨道形成闭合回路。金属棒ab的电阻为2R,金属棒cd的电阻为R。整个装置处在竖直向上、磁感应强度为B的匀强磁场中。

(1)若保持金属棒ab不动,使金属棒cd在与其垂直的水平恒力F作用下,沿轨道以速度v做匀速运动。试推导论证:在Δt时间内,F对金属棒cd所做的功W等于电路获得的电能E
(2)若先保持金属棒ab不动,使金属棒cd在与其垂直的水平力F′(大小未知)作用下,由静止开始向右以加速度a做匀加速直线运动,水平力F′作用t0时间撤去此力,同时释放金属棒ab。求两金属棒在撤去F′后的运动过程中,
①金属棒ab中产生的热量;
②它们之间的距离改变量的最大值Dx。

  • 题型:未知
  • 难度:未知

(12分)如图所示,两足够长的平行光滑的金属导轨MN、PQ相距为L,导轨平面与水平面的夹角=30°,导轨电阻不计,磁感应强度为B的匀强磁场垂直于导轨平面向上。长为L的金属棒垂直于MN、PQ放置在导轨上,且始终与导轨接触良好,金属棒的质量为、电阻为R。两金属导轨的上端连接一个灯泡,灯泡的电阻也为R。现闭合开关K ,给金属棒施加一个方向垂直于杆且平行于导轨平面向上的、大小为F=2mg的恒力,使金属棒由静止开始运动,当金属棒达到最大速度时,灯泡恰能达到它的额定功率。重力加速度为g,求:

(1)金属棒能达到的最大速度vm
(2)灯泡的额定功率PL
(3)若金属棒上滑距离为s时速度恰达到最大,求金属棒由静止开始上滑2s的过程中,金属棒上产生的电热Q1

  • 题型:未知
  • 难度:未知

《科学》介绍了一种新技术——航天飞缆,航天飞缆是用柔性缆索将两个物体连接起来在太空飞行的系统。飞缆系统在太空飞行中能为自身提供电能和拖曳力,它还能清理“太空垃圾”等。该系统的工作原理可用物理学的基本定律来解释。
下图为飞缆系统的简化模型示意图,图中两个物体P,Q的质量分别为mP、mQ,柔性金属缆索长为l,外有绝缘层,系统在近地轨道作圆周运动,运动过程中Q距地面高为h。设缆索总保持指向地心,P的速度为vP。已知地球半径为R,地面的重力加速度为g。

(1)飞缆系统在地磁场中运动,地磁场在缆索所在处的磁感应强度大小为B,方向垂直于纸面向外。设缆索中无电流,求缆索P、Q哪端电势高?两端的电势差多大?
(2)设缆索的电阻为R1,如果缆索两端物体P、Q通过周围的电离层放电形成电流,相应的电阻为R2,求缆索所受的安培力多大?
(3)求缆索对Q的拉力FQ多大?

  • 题型:未知
  • 难度:未知

如图1所示,两根足够长的平行金属导轨MN、PQ相距为L,导轨平面与水平面夹角为,金属棒ab垂直于MN、PQ放置在导轨上,且始终与导轨接触良好,金属棒的质量为m,导轨处于匀强磁场中,磁场的方向垂直于导轨平面斜向上,磁感应强度大小为B,金属导轨的上端与开关S、定值电阻R1和电阻箱R2相连。不计一切摩擦,不计导轨、金属棒的电阻,重力加速度为g,现闭合开关S,将金属棒由静止释放。

(1)判断金属棒ab中电流的方向;
(2)若电阻箱R2接入电路的阻值为R2="2" R1,当金属棒下降高度为h时,速度为v,求此过程中定值电阻R1上产生的焦耳热Q1
(3)当B=0.40T,L=0.50m,37°时,金属棒能达到的最大速度vm随电阻箱R2阻值的变化关系如图2所示。取g = 10m/s2,sin37°= 0.60,cos37°= 0.80。求定值电阻的阻值R1和金属棒的质量m。

  • 题型:未知
  • 难度:未知

如图甲所示,足够长的光滑U形导轨处在垂直于导轨平面向上的匀强磁场中,其宽度L =1m,所在平面与水平面的夹角为θ=53o,上端连接一个阻值为R=0.40 Ω的电阻.今有一质量为m=0.05kg、有效电阻为r=0.30 Ω的金属杆ab沿框架由静止下滑,并与两导轨始终保持垂直且良好接触,其沿着导轨的下滑距离x与时间t的关系如图乙所示,图象中的OA段为曲线,AB段为直线,导轨电阻不计,g=10 m/s2
(忽略ab棒运动过程中对原磁场的影响),试求:

(1)磁感应强度B的大小;
(2)金属杆ab在开始运动的1.5 s内,,通过电阻R的电荷量;
(3)金属棒ab在开始运动的1.5 s内,电阻R上产生的热量。

  • 题型:未知
  • 难度:未知

如图所示,倾角为、宽度为、长为的光滑倾斜导轨,导轨C1D1、C2D2顶端接有定值电阻,倾斜导轨置于垂直导轨平面斜向上的匀强磁场中,磁感应强度为B=5T,C1A1、C2A2是长为S=4.5m的粗糙水平轨道,A1B1、A2B2是半径为R=0.5m处于竖直平面内的光滑圆环(其中B1、B 2为弹性挡板),整个轨道对称。在导轨顶端垂直于导轨放一根质量为m=2kg、电阻不计的金属棒MN,当开关S闭合时,金属棒从倾斜轨道顶端静止释放,已知金属棒到达倾斜轨道底端前已达最大速度,当金属棒刚滑到倾斜导轨底端时断开开关S,(不考虑金属棒MN经过接点C1、C2处和棒与B1、B2处弹性挡板碰撞时的机械能损失,整个运动过程中金属棒始终保持水平,水平导轨与金属棒MN之间的动摩擦因数为µ=0.1,g=10m/s2)。求:

(1)开关闭合时金属棒滑到倾斜轨道底端时的速度;
(2)金属棒MN在倾斜导轨上运动的过程中,电阻R0上产生的热量Q;
(3)当金属棒第三次经过A1A2时对轨道的压力。

  • 题型:未知
  • 难度:未知

两根固定在水平面上的光滑平行金属导轨,一端接有阻值为的电阻,一匀强磁场在如图区域中与导轨平面垂直。在导轨上垂直导轨跨放质量的金属直杆,金属杆的电阻为,金属杆与导轨接触良好,导轨足够长且电阻不计。以位置作为计时起点,开始时金属杆在垂直杆的水平恒力作用下向右匀速运动,电阻R上的电功率是

(1)求金属杆匀速时速度大小
(2)若在时刻撤去拉力后,时刻R上的功率为时,求金属棒在时刻的加速度,以及-之间整个回路的焦耳热

  • 题型:未知
  • 难度:未知

如图所示,两根足够长的光滑金属导轨MN、PQ间距为L=0.5m,其电阻不计,两导轨及其构成的平面均与水平面成30°角。完全相同的两金属棒ab、cd分别垂直导轨放置,每棒两端都与导轨始终有良好接触,已知两棒的质量均为0.02kg,电阻均为R=0.1Ω,整个装置处在垂直于导轨平面向上的匀强磁场中,磁感应强度为B=0.2T,棒ab在平行于导轨向上的力F作用下,沿导轨向上匀速运动,而棒cd恰好能保持静止。取g=10m/s2,问:

(1)通过cd棒的电流I是多少,方向如何?
(2)棒ab受到的力F多大?
(3)力F的功率P是多少?

  • 题型:未知
  • 难度:未知

高中物理日光灯镇流器的作用和原理计算题