如图所示,在一底边长为2a,θ=30°的等腰三角形区域内(D在底边中点),有垂直纸面向外的匀强磁场.现有一质量为m,电量为q的带正电粒子从静止开始经过电势差为U的电场加速后,从D点垂直于EF进入磁场,不计重力和与空气阻力的影响.
(1)若粒子恰好垂直于EC边射出磁场,求磁场的磁感应强度B为多少?
(2)改变磁感应强度的大小,粒子进入磁场偏转后能打到ED板,求粒子从进入磁场到第一次打到ED板的最长时间是多少?
(3)改变磁感应强度的大小,可以再延长粒子在磁场中的运动时间,求粒子在磁场中运动的极限时间.(不计粒子与ED板碰撞的作用时间.设粒子与ED板碰撞前后,电量保持不变并以相同的速率反弹)窗体顶端
(附加题)
自由电子激光器原理如图,自由电子经电场加速后,从正中央射入上下排列着许多磁铁的磁场区域,相邻两磁铁相互紧靠且极性相反.电子在磁场力作用下 “扭动”着前进,每“扭动”一次就会发出一个光子(不计电子发出光子后能量损失),两端的反射镜使光子来回反射,最后从透光的一端发射出激光.
(1)若激光器发射激光的功率为P=6.63×109W,频率为ν=1016Hz,试求该激光器每秒发出的光子数(普朗克常量h=6.63×10-34J•s);
(2)若加速电压U=1.8×104V,电子质量m=9.0×10-31kg,电子电量e=1.6×10-19C,每对磁极间的磁场可看作是匀强磁场,磁感应强度B=9.0×10-4T,每个磁极左右宽l1=0.30m,垂直纸面方向长l2=1.0m.当电子从正中央垂直磁场方向射入时,电子可通过几对磁极?
如图所示,真空有一个半径r=0.5m的圆形磁场,与坐标原点相切,磁场的磁感应强度大小B=2×10-3T,方向垂直于纸面向里,在x=r处的虚线右侧有一个方向竖直向上的宽度为L1=0.5m的匀强电场区域,电场强度E=1.5×103N/C.在x=2m处有一垂直x方向的足够长的荧光屏,从O点处向不同方向发射出速率相同的荷质比=1×109C/kg带正电的粒子,粒子的运动轨迹在纸面内,一个速度方向沿y轴正方向射入磁场的粒子,恰能从磁场与电场的相切处进入电场。不计重力及阻力的作用。求:
(1)粒子进入电场时的速度和粒子在磁场中的运动的时间?
(2)速度方向与y轴正方向成30°(如图中所示)射入磁场的粒子,最后打到荧光屏上,该发光点的位置坐标。
如图所示,在以O为圆心,半径为R的圆形区域内,有一个水平方向的匀强磁场,磁场的磁感应强度大小为B,方向垂直纸面向外.竖直平行正对放置的两金属板A、K连在电压可调的电路中.S1、S2为A、K板上的两个小孔,且S1、S2和O在同一直线上,另有一水平放置的足够大的荧光屏D,O点与荧光屏的距离为h.比荷(电荷量与质量之比)为k的带正电的粒子由S1进入电场后,通过S2射入磁场中心,通过磁场后打在荧光屏D上.粒子进人电场的初速度及其所受重力均可忽略不计.
(1)请分段描述粒子自S1到荧光屏D的运动情况;
(2)求粒子垂直打在荧光屏上P点时速度的大小;
(3)移动变阻器滑片,使粒子打在荧光屏上的Q点,PQ=(如图所示),求此时A、K两极板间的电压.
试题篮
()