如图所示,粗糙、绝缘的直轨道固定在水平桌面上,端与桌面边缘对齐,是轨道上一点,过点并垂直于轨道的竖直面右侧有大小,方向水平向右的匀强电场。带负电的小物体电荷量是,质量,与轨道间动摩擦因数,从点由静止开始向右运动,经过到达点,到达点时速度是,到达空间点时速度与竖直方向的夹角为,且。在整个运动过程中始终受到水平向右的某外力作用,大小与的速率的关系如表所示。视为质点,电荷量保持不变,忽略空气阻力,取,求:
(1)小物体从开始运动至速率为所用的时间;
(2)小物体从运动至的过程,电场力做的功。
如图所示,宽度为L的金属框架竖直固定在绝缘地面上,框架的上端接有一特殊的电子元件,如果将其作用等效成一个电阻,则其阻值与其两端所加的电压成正比,即等效电阻R=kU,式中k为恒量。框架上有一质量为m的金属棒水平放置,金属棒与框架接触良好无摩擦,离地高为h,磁感应强度为B的匀强磁场与框架平面相垂直,将金属棒由静止释放,金属棒沿框架向下运动。不计金属棒及框架电阻,问:
⑴金属棒运动过程中,流过金属棒的电流多大?方向如何?
⑵金属棒经多长时间落到地面?金属棒下落过程中整个电路消耗的电能为多少?
如图所示,一条带有圆轨道的长轨道水平固定,圆轨道竖直,底端分别与两侧的直轨道相切,半径 ,物块 以 的速度滑入圆轨道,滑过最高点 ,再沿圆轨道滑出后,与直轨道上 处静止的物块 碰撞,碰后粘在一起运动, 点左侧轨道光滑,右侧轨道呈粗糙段、光滑段交替排列,每段长度都为 ,物块与各粗糙段间的动摩擦因数都为 , 、 的质量均为 (重力加速度 取 ; 、 视为质点,碰撞时间极短)。
⑴求 滑过Q点时的速度大小 和受到的弹力大小 ;
⑵若碰后 最终停止在第 个粗糙段上,求 的数值;
⑶求碰后
滑至第
个
光滑段上的速度
与
的关系式。
如图所示,在光滑绝缘的水平面上,放置两块直径为2L的同心半圆形金属板A、B,两板间的距离很近,半圆形金属板A、B的左边有水平向右的匀强电场E1,半圆形金属板A、B之间存在电场,两板间的电场强度E2可认为大小处处相等,方向都指向O,现从正对A、B板间隙、到两板的一端距离为d处静止释放一个质量为m、电荷量为q的带正电微粒(不计重力),此微粒恰能在两板间运动且不与板发生相互作用.
(1)求半圆形金属板A、B之间电场强度的E2的大小?
(2)从释放微粒开始,经过多长时间微粒的水平位移最大?
如图所示,直角坐标系xOy位于竖直平面内,x轴与绝缘的水平面重合,在y轴右方有垂直纸面向里的匀强磁场和竖直向上的匀强电场.质量为m2=8×10-3 kg的不带电小物块静止在原点O,A点距O点l=0.045 m,质量m1=1×10-3 kg的带电小物块以初速度v0=0.5 m/s从A点水平向右运动,在O点与m2发生正碰并把部分电量转移到m2上,碰撞后m2的速度为0.1 m/s,此后不再考虑m1、m2间的库仑力。已知电场强度E=40 N/C,小物块m1与水平面的动摩擦因数为μ=0.1,取g=10 m/s2,求:
(1)碰后m1的速度;
(2)若碰后m2做匀速圆周运动且恰好通过P点,OP与x轴的夹角θ=30°,OP长为lOP=0.4 m,求磁感应强度B的大小;
(3)其他条件不变,若改变磁场磁感应强度B′的大小,使m2能与m1再次相碰,求B′的大小。
如图所示,电阻不计、间距L=1m、足够长的光滑金属导轨ab、cd与水平面成θ=37°角,导轨平面矩形区域efhg内分布着磁感应强度的大小B=1T,方向垂直导轨平面向上的匀强磁场,边界ef、gh之间的距离D=1.4m。现将质量m=0.1kg、电阻的导体棒P、Q相隔Δt=0.2s先后从导轨顶端由静止自由释放,P、Q在导轨上运动时始终与导轨垂直且接触良好,P进入磁场时恰好匀速运动,Q穿出磁场时速度为2.8m/s。已知重力加速度g=10m/s2,sin37°=0.6,求
(1)导轨顶端与磁场上边界ef之间的距离S;
(2)从导体棒P释放到Q穿出磁场的过程,回路中产生的焦耳热Q总。
如图所示,一木箱静止、在长平板车上,某时刻平板车以a=2.5m/s2的加速度由静止开始向前做匀加速直线运动,当速度达到v=9m/s时改做匀速直线运动,己知木箱与平板车之间的动脒擦因数μ=0.225,箱与平板车之间的最大静摩擦力与滑动静擦力相等(g取10m/s2)。求:
(1)车在加速过程中木箱运动的加速度的大小;
(2)木箱做加速运动的时间和位移的大小;
(3)要使木箱不从平板车上滑落,木箱开始时距平板车右端的最小距离。
如图甲所示,倾角θ =37°的粗糙斜面固定在水平面上,斜面足够长。一根轻弹簧一端固定在斜面的底端,另一端与质量m=1.0kg的小滑块(可视为质点)接触,滑块与弹簧不相连,弹簧处于压缩状态。当t=0时释放滑块。在0~0.24s时间内,滑块的加速度a随时间t变化的关系如图乙所示。已知弹簧的劲度系数N/m,当t=0.14s时,滑块的速度v1=2.0m/s。g取l0m/s2,sin37°=0.6,cos37°=0.8。弹簧弹性势能的表达式为(式中k为弹簧的劲度系数,x为弹簧的形变量)。求:
(1)斜面对滑块摩擦力的大小f;
(2)t=0.14s时滑块与出发点间的距离d;
(3)在0~0.44s时间内,摩擦力做的功W。
下暴雨时,有时会发生山体滑坡或泥石流等地质灾害。某地有一倾角为()的山坡C,上面有一质量为的石板B,其上下表面与斜坡平行;B上有一碎石堆A(含有大量泥土),A和B均处于静止状态,如图所示。假设某次暴雨中,A浸透雨水后总质量也为(可视为质量不变的滑块),在极短时间内,A、B间的动摩擦因数减小为,B、C间的动摩擦因数减小为,A、B开始运动,此时刻为计时起点;在第末,B的上表面突然变为光滑,保持不变。已知A开始运动时,A离B下边缘的距离,C足够长,设最大静摩擦力等于滑动摩擦力。取重力加速度大小。求:
(1)在时间内A和B加速度的大小;
(2)A在B上总的运动时间。
如图所示,A、B两物块用一根轻绳跨过定滑轮相连,不带电的B、C通过一根轻弹簧拴接在一起,且处于静止状态,其中A带负电,电荷量大小为q。质量为2 m的A静止于斜面的光滑部分(斜面倾角为37°,其上部分光滑,下部分粗糙且足够长,粗糙部分的摩擦系数为μ,且μ=tan300,上方有一个平行于斜面向下的匀强电场),通过细绳与B相连接,此时与B相连接的轻弹簧恰好无形变。弹簧劲度系数为k。B、C质量相等,均为m,不计滑轮的质量和摩擦,重力加速度为g。
(1)电场强度E的大小为多少?
(2)现突然将电场的方向改变 180°,A开始运动起来,当C刚好要离开地面时(此时 B还没有运动到滑轮处,A刚要滑上斜面的粗糙部分),B的速度大小为v,求此时弹簧的弹性势能EP。
(3)若(2)问中A刚要滑上斜面的粗糙部分时,绳子断了,电场恰好再次反向,请问A再经多长时间停下来?
光滑水平面上有一质量为M="2" kg的足够长的木板,木板上最有右端有一大小可忽略、质量为m=3kg的物块,物块与木板间的动摩擦因数,且最大静摩擦力等于滑动摩擦力。开始时物块和木板都静止,距木板左端L=2.4m处有一固定在水平面上的竖直弹性挡板P。现对物块施加一水平向左外力F=6N,若木板与挡板P发生撞击时间极短,并且撞击时无动能损失,物块始终未能与挡板相撞,求:
(1)木板第一次撞击挡板P时的速度为多少?
(2)木板从第一次撞击挡板P到运动至右端最远处所需的时间及此时物块距木板右端的距离X为多少?
(3)木板与挡板P会发生多次撞击直至静止,而物块一直向左运动。每次木板与挡板P撞击前物块和木板都已相对静止,最后木板静止于挡板P处,求木板与物块都静止时物块距木板最右端的距离X为多少?
某汽车训练场地有如图设计,在平直的道路上,依次有编号为A、B、C、D、E的五根标志杆,相邻杆之间的距离ΔL=12.0 m。一次训练中,学员驾驶汽车以57.6km/h的速度匀速向标志杆驶来,教练与学员坐在同排观察并记录时间。当教练经过O点时向学员发出指令:“立即刹车”,同时用秒表开始计时。忽略反应时间,刹车后汽车做匀减速直线运动,停在D标杆附近。教练记录自己经过C杆时秒表的读数为tC=6.0 s,已知LOA=36m,教练距车头的距离Δs=1.5 m。求:
(1)刹车后汽车做匀减速运动的加速度大小a;
(2)汽车停止运动时,车头离标志杆D的距离Δx。
一足够大的倾角为45º的斜面上有一点O,O点正上方h=0.4m处有一点P。在P点以水平速度v0=1m/s抛出一个小球,随着抛出方向的不同,小球将落到斜面上的不同位置。不计空气阻力,重力加速度g取10m/s2。试求小球落到斜面上的位置距离O点的最大值和最小值。
如图,水平轨道AB与竖直固定圆轨道相切于B点,C为圆轨道最高点,圆轨道半径R=5m.一质量m=60kg的志愿者,驾驶质量M=940kg、额定功率P=40kW的汽 车体验通过圆轨道时所受底座的作用力,汽车从A点由静止以加速度a=2m/s2做匀 加速运动,到达B点时,志愿者调节汽车牵引力,使汽车匀速率通过圆轨道又回到B点,志愿者在C点时所受底座的支持力等于志愿者的重力,已知汽车在水平轨道及圆轨道上的阻力均为汽车对轨道压力的0.1倍,取g=10m/s2,计算中将汽车视为质点。
求:
(1)汽车在C点的速率;
(2)汽车在C点的牵引功率;
(3)AB间的距离及汽车从A点经圆轨道又回到B点的过程所用的时间。
试题篮
()